Solvent-free two-component electrospinning of ultrafine polymer fibers
Solvent recovery is a big challenge in conventional solution electrospinning for the large-scale production of ultrafine fibers because the precursor utilization ratio is usually less than 20 wt%. In this paper, we report an eco-friendly two-component electrospinning technique for the fabrication of...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2018, Vol.42 (14), p.11739-11745 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solvent recovery is a big challenge in conventional solution electrospinning for the large-scale production of ultrafine fibers because the precursor utilization ratio is usually less than 20 wt%. In this paper, we report an eco-friendly two-component electrospinning technique for the fabrication of acrylate composite fibers using a homemade device at room temperature. During this electrospinning process, the two-component spinning solutions (component A:
t
-butyl peroxy-2-ethyl hexanoate (BPOEH), isobornyl methacrylate (IBOMA), nitrile rubber (NBR), methacrylic acid (MAA); component B:
N
,
N
-dimethylaniline (DMA), IBOMA, NBR and MAA) are nearly all electrospun into ultrafine fibers, and the utilization ratio of the precursor can reach more than 90 wt%. The fiber solidification mechanism can be ascribed to the rapid polymerization of the IBOMA monomer in the presence of free radicals formed by a redox initiation system (BPOEH + DMA), which is different from the solvent evaporation in solution electrospinning or cooling solidification in melt electrospinning. Such a two-component electrospinning technique may stimulate the development of an eco-friendly approach to fabricate composite and functional ultrafine fibers.
A new type of solvent-free electrospinning technique was developed to fabricate micro-fibers. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/c8nj01513a |