Energy Management in Autonomous Microgrid Using Stability-Constrained Droop Control of Inverters
This paper presents an energy management system (EMS) for a stand-alone droop-controlled microgrid, which adjusts generators output power to minimize fuel consumption and also ensures stable operation. It has previously been shown that frequency-droop gains have a significant effect on stability in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2008-09, Vol.23 (5), p.2346-2352 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an energy management system (EMS) for a stand-alone droop-controlled microgrid, which adjusts generators output power to minimize fuel consumption and also ensures stable operation. It has previously been shown that frequency-droop gains have a significant effect on stability in such microgrids. Relationship between these parameters and stability margins are therefore identified, using qualitative analysis and small-signal techniques. This allows them to be selected to ensure stability. Optimized generator outputs are then implemented in real-time by the EMS, through adjustments to droop characteristics within this constraint. Experimental results from a laboratory-sized microgrid confirm the EMS function. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2008.2001910 |