Optimal Energy Consumption for Mobile Manipulators Executing Door-Opening Task
As a substitute for humans, the mobile manipulator has become increasingly vital for on-site rescues at Nuclear Power Plants (NPPs) in recent years. The high energy efficiency of the mobile manipulator when executing specific rescue tasks is of great importance for the mobile manipulator. This paper...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a substitute for humans, the mobile manipulator has become increasingly vital for on-site rescues at Nuclear Power Plants (NPPs) in recent years. The high energy efficiency of the mobile manipulator when executing specific rescue tasks is of great importance for the mobile manipulator. This paper focuses on the energy consumption of a robot executing the door-opening task, in a scenario mimicking an NPP rescue. We present an energy consumption optimization scheme to determine the optimal base position and joint motion of the manipulator. We developed a two-step procedure to solve the optimization problem, taking the quadric terms of the joint torques as the objective function. Firstly, the rotational motion of the door is parameterized by using piecewise fifth-order polynomials, and the parameters of the polynomials are optimized by minimizing the joint torques at the specified base position using the Quasi-Newton method. Second, the global optimal movement of the manipulator for executing the door-opening task is acquired by means of searching a grid for feasible base positions. Comprehensive door-opening experiments using a mobile manipulator platform were conducted. The effectiveness of the proposed method has been demonstrated by the results of physical experiments. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2018/8987953 |