Nonlinear Robust Backstepping Control for Three-Phase Grid-Connected PV Systems

This paper proposes a cascade control structure for three-phase grid-connected Photovoltaic (PV) systems. The PV system consists of a PV Generator, DC/DC converter, a DC link, a DC/AC fully controlled inverter, and the main grid. For the control process, a new control strategy using nonlinear Backst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-13
Hauptverfasser: Boujmil, Mohamed Habib, Mansouri, Mohamed Nejib, Badis, Afef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a cascade control structure for three-phase grid-connected Photovoltaic (PV) systems. The PV system consists of a PV Generator, DC/DC converter, a DC link, a DC/AC fully controlled inverter, and the main grid. For the control process, a new control strategy using nonlinear Backstepping technique is developed. This strategy comprises three targets, namely, DC/DC converter control; tight control of the DC link voltage; and delivering the desired output power to the active grid with unity power factor (PF). Moreover, the control process relies mainly on the formulation of stability based on Lyapunov functions. Maximizing the energy reproduced from a solar power generation system is investigated as well by using the Perturb and Observe (P&O) algorithm. The Energetic Macroscopic Representation (EMR) and its reverse Maximum Control Structure (MCS) are used to provide, respectively, an instantaneous average model and a cascade control structure. The robust proposed control strategy adapts well to the cascade control technique. Simulations have been conducted using Matlab/Simulink software in order to illustrate the validity and robustness of the proposed technique under different operating conditions, namely, abrupt changing weather condition, sudden parametric variations, and voltage dips, and when facing measurement uncertainties. The problem of controlling the grid-connected PV system is addressed and dealt by using the nonlinear Backstepping control.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/3824628