Influence of Biochar from Slow Pyrolysis on Dissolved Organic Carbon and Total Dissolved Nitrogen Levels of Urban Storm-Water Runoff
Biochar as a filtering media has been attracted increasing attention for applications in urban storm-water runoff (USWR) management. Up-flow percolation tests were conducted with pine bark (PB) and biochars from PB (BCPB) for evaluating changes in dissolved organic carbon (DOC) and total dissolved n...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2018-08, Vol.229 (8), p.1-18, Article 245 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biochar as a filtering media has been attracted increasing attention for applications in urban storm-water runoff (USWR) management. Up-flow percolation tests were conducted with pine bark (PB) and biochars from PB (BCPB) for evaluating changes in dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) concentrations varying with pyrolysis temperatures (i.e., 300, 450, and 700 °C) and types of USWR (i.e., roof and pathway USWR). The most suitable pyrolysis temperature for limiting DOC leaching from BCPB depends on the types of USWR. For all the adopted pyrolysis temperature, BCPB released cumulative amount of DOC up to 0.01% of the TC content in the up-flow percolation tests with pathway USWR. High-temperature (i.e., 700 °C) BCPB released lower cumulative amount of DOC (up to 0.02% of the TC content) compared to the low-temperature ( |
---|---|
ISSN: | 0049-6979 1573-2932 |
DOI: | 10.1007/s11270-018-3896-9 |