Stability of standing waves for the fractional Schrödinger–Choquard equation

In this paper, we consider the stability of standing waves for the fractional Schrödinger–Choquard equation with an L2-critical nonlinearity. By using the profile decomposition of bounded sequences in Hs and variational methods, we prove that the standing waves are orbitally stable. We extend the st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2018-04, Vol.75 (7), p.2499-2507
Hauptverfasser: Feng, Binhua, Zhang, Honghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the stability of standing waves for the fractional Schrödinger–Choquard equation with an L2-critical nonlinearity. By using the profile decomposition of bounded sequences in Hs and variational methods, we prove that the standing waves are orbitally stable. We extend the study of Bhattarai for a single equation (Bhattarai, 2017) to the L2-critical case.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2017.12.025