Stability of standing waves for the fractional Schrödinger–Choquard equation
In this paper, we consider the stability of standing waves for the fractional Schrödinger–Choquard equation with an L2-critical nonlinearity. By using the profile decomposition of bounded sequences in Hs and variational methods, we prove that the standing waves are orbitally stable. We extend the st...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2018-04, Vol.75 (7), p.2499-2507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the stability of standing waves for the fractional Schrödinger–Choquard equation with an L2-critical nonlinearity. By using the profile decomposition of bounded sequences in Hs and variational methods, we prove that the standing waves are orbitally stable. We extend the study of Bhattarai for a single equation (Bhattarai, 2017) to the L2-critical case. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2017.12.025 |