Internal Rotation and Equilibrium Structure of the Bromonitromethane Molecule According to Gas Electron Diffraction Data and Quantum Chemical Calculations

The structure and internal rotation of the bromonitromethane molecule are studied using electron diffraction analysis and quantum chemical calculations. The electron diffraction data are analyzed within the models of a general intramolecular anharmonic force field and quantum chemical pseudoconforme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural chemistry 2018-05, Vol.59 (3), p.512-519
Hauptverfasser: Tarasov, Yu. I., Kochikov, I. V., Bazhanova, Z. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure and internal rotation of the bromonitromethane molecule are studied using electron diffraction analysis and quantum chemical calculations. The electron diffraction data are analyzed within the models of a general intramolecular anharmonic force field and quantum chemical pseudoconformers to account for the adiabatic separation of a large amplitude motion associated with the internal rotation of the NO 2 group. The following experimental bond lengths and valence angles are obtained for the equilibrium orthogonal configuration of the molecule with C s symmetry: r e (N=O) = 1.217(5) Å, r e (C–N) = 1.48(2) Å, r e (C–Br) = 1.919(5) Å, ∠ е Br–C–N = 109.6(9)°, ∠ е O=N=O = 125.9(9)°. The equilibrium geometry parameters are in good agreement with CCSD(T)/cc-pVTZ calculations. Thermally averaged parameters are calculated using the equilibrium geometry and quadratic and cubic quantum chemical force constants. The barrier to internal rotation cannot be determined reliably based on the electron diffraction data used in this work. There is a 82% probability that the equilibrium configuration with orthogonal C–Br and N=O bonds is most preferable, and internal rotation barrier does not exceed 280 cm -1 , which agrees with CCSD(T)/cc-pVTZ calculations.
ISSN:0022-4766
1573-8779
DOI:10.1134/S0022476618030034