Any counterexample to Makienko’s conjecture is an indecomposable continuum

Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2009-06, Vol.29 (3), p.875-883
Hauptverfasser: CURRY, CLINTON P., MAYER, JOHN C., MEDDAUGH, JONATHAN, ROGERS Jr, JAMES T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 883
container_issue 3
container_start_page 875
container_title Ergodic theory and dynamical systems
container_volume 29
creator CURRY, CLINTON P.
MAYER, JOHN C.
MEDDAUGH, JONATHAN
ROGERS Jr, JAMES T.
description Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.
doi_str_mv 10.1017/S014338570800059X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206525055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S014338570800059X</cupid><sourcerecordid>1711871701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-ab8a10da69558d1fc23b57eb84eed886c1bb52ee2f6a4cc2e30ffd12aa213a843</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhgdRsFYfwF1wH51L5pJlKdoKFS0quBsmkxNJ22TqTALtztfw9XwSp1R0Ia7O4vv-8x8OQucEXxJM5NUjJhljikusMMY8fzlAA5KJPM0yIg_RYIfTHT9GJyEsosOI5AM0G7XbxLq-7cDDxjTrFSSdS-7MsoZ26T7fP0LE7QJs13tI6pCYNqnbEqxr1i6YIvqRd3Xb980pOqrMKsDZ9xyi55vrp_E0nd1PbsejWWpZLrvUFMoQXBqRc65KUlnKCi6hUBlAqZSwpCg4BaCVMJm1FBiuqpJQYyhhRmVsiC72e9fevfUQOr1wvW9jpaZYcMox51Eie8l6F4KHSq993Ri_1QTr3c_0n5_FTLrP1KGDzU_A-KUWkkmuxWSuxXTOJJ0z_RB99t1hmsLX5Sv8XvJ_yxcZbH9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206525055</pqid></control><display><type>article</type><title>Any counterexample to Makienko’s conjecture is an indecomposable continuum</title><source>Cambridge University Press Journals Complete</source><creator>CURRY, CLINTON P. ; MAYER, JOHN C. ; MEDDAUGH, JONATHAN ; ROGERS Jr, JAMES T.</creator><creatorcontrib>CURRY, CLINTON P. ; MAYER, JOHN C. ; MEDDAUGH, JONATHAN ; ROGERS Jr, JAMES T.</creatorcontrib><description>Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S014338570800059X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dynamical systems ; Mathematics</subject><ispartof>Ergodic theory and dynamical systems, 2009-06, Vol.29 (3), p.875-883</ispartof><rights>Copyright © Cambridge University Press 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-ab8a10da69558d1fc23b57eb84eed886c1bb52ee2f6a4cc2e30ffd12aa213a843</citedby><cites>FETCH-LOGICAL-c397t-ab8a10da69558d1fc23b57eb84eed886c1bb52ee2f6a4cc2e30ffd12aa213a843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S014338570800059X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>CURRY, CLINTON P.</creatorcontrib><creatorcontrib>MAYER, JOHN C.</creatorcontrib><creatorcontrib>MEDDAUGH, JONATHAN</creatorcontrib><creatorcontrib>ROGERS Jr, JAMES T.</creatorcontrib><title>Any counterexample to Makienko’s conjecture is an indecomposable continuum</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.</description><subject>Dynamical systems</subject><subject>Mathematics</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKw0AUhgdRsFYfwF1wH51L5pJlKdoKFS0quBsmkxNJ22TqTALtztfw9XwSp1R0Ia7O4vv-8x8OQucEXxJM5NUjJhljikusMMY8fzlAA5KJPM0yIg_RYIfTHT9GJyEsosOI5AM0G7XbxLq-7cDDxjTrFSSdS-7MsoZ26T7fP0LE7QJs13tI6pCYNqnbEqxr1i6YIvqRd3Xb980pOqrMKsDZ9xyi55vrp_E0nd1PbsejWWpZLrvUFMoQXBqRc65KUlnKCi6hUBlAqZSwpCg4BaCVMJm1FBiuqpJQYyhhRmVsiC72e9fevfUQOr1wvW9jpaZYcMox51Eie8l6F4KHSq993Ri_1QTr3c_0n5_FTLrP1KGDzU_A-KUWkkmuxWSuxXTOJJ0z_RB99t1hmsLX5Sv8XvJ_yxcZbH9f</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>CURRY, CLINTON P.</creator><creator>MAYER, JOHN C.</creator><creator>MEDDAUGH, JONATHAN</creator><creator>ROGERS Jr, JAMES T.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>Any counterexample to Makienko’s conjecture is an indecomposable continuum</title><author>CURRY, CLINTON P. ; MAYER, JOHN C. ; MEDDAUGH, JONATHAN ; ROGERS Jr, JAMES T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-ab8a10da69558d1fc23b57eb84eed886c1bb52ee2f6a4cc2e30ffd12aa213a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Dynamical systems</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CURRY, CLINTON P.</creatorcontrib><creatorcontrib>MAYER, JOHN C.</creatorcontrib><creatorcontrib>MEDDAUGH, JONATHAN</creatorcontrib><creatorcontrib>ROGERS Jr, JAMES T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CURRY, CLINTON P.</au><au>MAYER, JOHN C.</au><au>MEDDAUGH, JONATHAN</au><au>ROGERS Jr, JAMES T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Any counterexample to Makienko’s conjecture is an indecomposable continuum</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>29</volume><issue>3</issue><spage>875</spage><epage>883</epage><pages>875-883</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S014338570800059X</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2009-06, Vol.29 (3), p.875-883
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_206525055
source Cambridge University Press Journals Complete
subjects Dynamical systems
Mathematics
title Any counterexample to Makienko’s conjecture is an indecomposable continuum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Any%20counterexample%20to%20Makienko%E2%80%99s%20conjecture%20is%20an%20indecomposable%20continuum&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=CURRY,%20CLINTON%20P.&rft.date=2009-06-01&rft.volume=29&rft.issue=3&rft.spage=875&rft.epage=883&rft.pages=875-883&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S014338570800059X&rft_dat=%3Cproquest_cross%3E1711871701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206525055&rft_id=info:pmid/&rft_cupid=10_1017_S014338570800059X&rfr_iscdi=true