Any counterexample to Makienko’s conjecture is an indecomposable continuum
Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rationa...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2009-06, Vol.29 (3), p.875-883 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 883 |
---|---|
container_issue | 3 |
container_start_page | 875 |
container_title | Ergodic theory and dynamical systems |
container_volume | 29 |
creator | CURRY, CLINTON P. MAYER, JOHN C. MEDDAUGH, JONATHAN ROGERS Jr, JAMES T. |
description | Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum. |
doi_str_mv | 10.1017/S014338570800059X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206525055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S014338570800059X</cupid><sourcerecordid>1711871701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-ab8a10da69558d1fc23b57eb84eed886c1bb52ee2f6a4cc2e30ffd12aa213a843</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhgdRsFYfwF1wH51L5pJlKdoKFS0quBsmkxNJ22TqTALtztfw9XwSp1R0Ia7O4vv-8x8OQucEXxJM5NUjJhljikusMMY8fzlAA5KJPM0yIg_RYIfTHT9GJyEsosOI5AM0G7XbxLq-7cDDxjTrFSSdS-7MsoZ26T7fP0LE7QJs13tI6pCYNqnbEqxr1i6YIvqRd3Xb980pOqrMKsDZ9xyi55vrp_E0nd1PbsejWWpZLrvUFMoQXBqRc65KUlnKCi6hUBlAqZSwpCg4BaCVMJm1FBiuqpJQYyhhRmVsiC72e9fevfUQOr1wvW9jpaZYcMox51Eie8l6F4KHSq993Ri_1QTr3c_0n5_FTLrP1KGDzU_A-KUWkkmuxWSuxXTOJJ0z_RB99t1hmsLX5Sv8XvJ_yxcZbH9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206525055</pqid></control><display><type>article</type><title>Any counterexample to Makienko’s conjecture is an indecomposable continuum</title><source>Cambridge University Press Journals Complete</source><creator>CURRY, CLINTON P. ; MAYER, JOHN C. ; MEDDAUGH, JONATHAN ; ROGERS Jr, JAMES T.</creator><creatorcontrib>CURRY, CLINTON P. ; MAYER, JOHN C. ; MEDDAUGH, JONATHAN ; ROGERS Jr, JAMES T.</creatorcontrib><description>Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S014338570800059X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dynamical systems ; Mathematics</subject><ispartof>Ergodic theory and dynamical systems, 2009-06, Vol.29 (3), p.875-883</ispartof><rights>Copyright © Cambridge University Press 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-ab8a10da69558d1fc23b57eb84eed886c1bb52ee2f6a4cc2e30ffd12aa213a843</citedby><cites>FETCH-LOGICAL-c397t-ab8a10da69558d1fc23b57eb84eed886c1bb52ee2f6a4cc2e30ffd12aa213a843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S014338570800059X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>CURRY, CLINTON P.</creatorcontrib><creatorcontrib>MAYER, JOHN C.</creatorcontrib><creatorcontrib>MEDDAUGH, JONATHAN</creatorcontrib><creatorcontrib>ROGERS Jr, JAMES T.</creatorcontrib><title>Any counterexample to Makienko’s conjecture is an indecomposable continuum</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.</description><subject>Dynamical systems</subject><subject>Mathematics</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKw0AUhgdRsFYfwF1wH51L5pJlKdoKFS0quBsmkxNJ22TqTALtztfw9XwSp1R0Ia7O4vv-8x8OQucEXxJM5NUjJhljikusMMY8fzlAA5KJPM0yIg_RYIfTHT9GJyEsosOI5AM0G7XbxLq-7cDDxjTrFSSdS-7MsoZ26T7fP0LE7QJs13tI6pCYNqnbEqxr1i6YIvqRd3Xb980pOqrMKsDZ9xyi55vrp_E0nd1PbsejWWpZLrvUFMoQXBqRc65KUlnKCi6hUBlAqZSwpCg4BaCVMJm1FBiuqpJQYyhhRmVsiC72e9fevfUQOr1wvW9jpaZYcMox51Eie8l6F4KHSq993Ri_1QTr3c_0n5_FTLrP1KGDzU_A-KUWkkmuxWSuxXTOJJ0z_RB99t1hmsLX5Sv8XvJ_yxcZbH9f</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>CURRY, CLINTON P.</creator><creator>MAYER, JOHN C.</creator><creator>MEDDAUGH, JONATHAN</creator><creator>ROGERS Jr, JAMES T.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>Any counterexample to Makienko’s conjecture is an indecomposable continuum</title><author>CURRY, CLINTON P. ; MAYER, JOHN C. ; MEDDAUGH, JONATHAN ; ROGERS Jr, JAMES T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-ab8a10da69558d1fc23b57eb84eed886c1bb52ee2f6a4cc2e30ffd12aa213a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Dynamical systems</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CURRY, CLINTON P.</creatorcontrib><creatorcontrib>MAYER, JOHN C.</creatorcontrib><creatorcontrib>MEDDAUGH, JONATHAN</creatorcontrib><creatorcontrib>ROGERS Jr, JAMES T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CURRY, CLINTON P.</au><au>MAYER, JOHN C.</au><au>MEDDAUGH, JONATHAN</au><au>ROGERS Jr, JAMES T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Any counterexample to Makienko’s conjecture is an indecomposable continuum</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>29</volume><issue>3</issue><spage>875</spage><epage>883</epage><pages>875-883</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S014338570800059X</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2009-06, Vol.29 (3), p.875-883 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_206525055 |
source | Cambridge University Press Journals Complete |
subjects | Dynamical systems Mathematics |
title | Any counterexample to Makienko’s conjecture is an indecomposable continuum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Any%20counterexample%20to%20Makienko%E2%80%99s%20conjecture%20is%20an%20indecomposable%20continuum&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=CURRY,%20CLINTON%20P.&rft.date=2009-06-01&rft.volume=29&rft.issue=3&rft.spage=875&rft.epage=883&rft.pages=875-883&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S014338570800059X&rft_dat=%3Cproquest_cross%3E1711871701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206525055&rft_id=info:pmid/&rft_cupid=10_1017_S014338570800059X&rfr_iscdi=true |