Any counterexample to Makienko’s conjecture is an indecomposable continuum

Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2009-06, Vol.29 (3), p.875-883
Hauptverfasser: CURRY, CLINTON P., MAYER, JOHN C., MEDDAUGH, JONATHAN, ROGERS Jr, JAMES T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Makienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.
ISSN:0143-3857
1469-4417
DOI:10.1017/S014338570800059X