Regularization and topological entropy for the spatial n-center problem

We show that the n-center problem in \mathbb{R}3 has positive topological entropy for n\ge 3. The proof is based on global regularization of singularities and the results of Gromov and Paternain on the topological entropy of geodesic flows. The n-center problem in S3 is also studied.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2001-04, Vol.21 (2), p.383-399
Hauptverfasser: BOLOTIN, S. V., NEGRINI, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the n-center problem in \mathbb{R}3 has positive topological entropy for n\ge 3. The proof is based on global regularization of singularities and the results of Gromov and Paternain on the topological entropy of geodesic flows. The n-center problem in S3 is also studied.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385701001195