Convergence of diagonal ergodic averages

Tao has recently proved that if T1,…,Tl are commuting, invertible, measure-preserving transformations on a dynamical system, then for any L∞ functions f1,…,fl, the average (1/N)∑ n=0N−1∏ i≤lfi∘Tin converges in the L2 norm. Tao’s proof is unusual in that it translates the problem into a more complica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2009-08, Vol.29 (4), p.1309-1326
1. Verfasser: TOWSNER, HENRY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tao has recently proved that if T1,…,Tl are commuting, invertible, measure-preserving transformations on a dynamical system, then for any L∞ functions f1,…,fl, the average (1/N)∑ n=0N−1∏ i≤lfi∘Tin converges in the L2 norm. Tao’s proof is unusual in that it translates the problem into a more complicated statement about the combinatorics of finite spaces by using the Furstenberg correspondence ‘backwards’. In this paper, we give an ergodic proof of this theorem, essentially a translation of Tao’s argument to the ergodic setting. In order to do this, we develop two new variations on the usual Furstenberg correspondence, both of which take recurrence-type statements in one dynamical system and give equivalent statements in a different dynamical system with desirable properties.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385708000722