Unipotent flows on the space of branched covers of Veech surfaces

There is a natural action of SL$(2,\mathbb{R})$ on the moduli space of translation surfaces, and this yields an action of the unipotent subgroup $U = \big\{\big(\begin{smallmatrix}1 & * \\ 0 & 1\end{smallmatrix}\big)\big\}$. We classify the U-invariant ergodic measures on certain special sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2006-02, Vol.26 (1), p.129-162
Hauptverfasser: ESKIN, ALEX, MARKLOF, JENS, MORRIS, DAVE WITTE
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a natural action of SL$(2,\mathbb{R})$ on the moduli space of translation surfaces, and this yields an action of the unipotent subgroup $U = \big\{\big(\begin{smallmatrix}1 & * \\ 0 & 1\end{smallmatrix}\big)\big\}$. We classify the U-invariant ergodic measures on certain special submanifolds of the moduli space. (Each submanifold is the SL$(2,\mathbb{R})$-orbit of the set of branched covers of a fixed Veech surface.) For the U-action on these submanifolds, this is an analogue of Ratner's theorem on unipotent flows. The result yields an asymptotic estimate of the number of periodic trajectories for billiards in a certain family of non-Veech rational triangles, namely, the isosceles triangles in which exactly one angle is $2 \pi/n$, with $n \ge 5$ and n odd.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385705000234