Baker domains of meromorphic functions
Let $f$ be a transcendental meromorphic function and $U$ a Baker domain of $f$. We obtain new estimates for the behaviour of the iterates of $f$ in $U$ and we use these estimates to improve an earlier result relating the geometric properties of $U$ to the proximity of $f$ to the identity function in...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2006-08, Vol.26 (4), p.1225-1233 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $f$ be a transcendental meromorphic function and $U$ a Baker domain of $f$. We obtain new estimates for the behaviour of the iterates of $f$ in $U$ and we use these estimates to improve an earlier result relating the geometric properties of $U$ to the proximity of $f$ to the identity function in $U$. We also apply these estimates to Baker domains of transcendental meromorphic functions $f$ of the form \begin{gather*} f(z) = az + bz^ke^{-z}(1+o(1)) \quad \text{as } \Re (z) \rightarrow \infty, \end{gather*} where $k \in {\mathbb N},\ a > 1$ and $b > 0$, and show that these Baker domains contain an unbounded set of critical points and an unbounded set of critical values. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385706000162 |