Baker domains of meromorphic functions

Let $f$ be a transcendental meromorphic function and $U$ a Baker domain of $f$. We obtain new estimates for the behaviour of the iterates of $f$ in $U$ and we use these estimates to improve an earlier result relating the geometric properties of $U$ to the proximity of $f$ to the identity function in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2006-08, Vol.26 (4), p.1225-1233
1. Verfasser: RIPPON, P. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $f$ be a transcendental meromorphic function and $U$ a Baker domain of $f$. We obtain new estimates for the behaviour of the iterates of $f$ in $U$ and we use these estimates to improve an earlier result relating the geometric properties of $U$ to the proximity of $f$ to the identity function in $U$. We also apply these estimates to Baker domains of transcendental meromorphic functions $f$ of the form \begin{gather*} f(z) = az + bz^ke^{-z}(1+o(1)) \quad \text{as } \Re (z) \rightarrow \infty, \end{gather*} where $k \in {\mathbb N},\ a > 1$ and $b > 0$, and show that these Baker domains contain an unbounded set of critical points and an unbounded set of critical values.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385706000162