The escaping set of the exponential

We show that the set I(f) of points that converge to infinity under iteration of the exponential map f(z)=exp (z) is a connected subset of the complex plane.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2010-04, Vol.30 (2), p.595-599
1. Verfasser: REMPE, LASSE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 2
container_start_page 595
container_title Ergodic theory and dynamical systems
container_volume 30
creator REMPE, LASSE
description We show that the set I(f) of points that converge to infinity under iteration of the exponential map f(z)=exp (z) is a connected subset of the complex plane.
doi_str_mv 10.1017/S014338570900008X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206516383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S014338570900008X</cupid><sourcerecordid>1979113481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-84e5ee9043c5742b0e94d556c0641dde6705e6ea3a20cbfa71c6ce713ae5152f3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeg5-hO9l9ylFarULBileJl2WwmNbVN4m4K9dubkKIHcS4D835v3jCEnAO9Agrq-pkCZywWiia0rXhxQAbAZRJyDuqQDDo57PRjcuL9qkUYKDEgl_N3DNBbUxflMvDYBFUeNN1sV1cllk1h1qfkKDdrj2f7PiQvd7fz0X04fZw8jG6moWWJasKYo0BMKGdWKB6lFBOeCSEtlRyyDKWiAiUaZiJq09wosNKiAmZQgIhyNiQX_d7aVZ9b9I1eVVtXtpE6olKAZDFrIegh6yrvHea6dsXGuC8NVHev0H9e0XrC3lP4Bnc_BuM-tFRMCS0nT3oMs8V4pt70a8uzfYbZpK7Ilvh7yf8p3_E9bZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206516383</pqid></control><display><type>article</type><title>The escaping set of the exponential</title><source>Cambridge University Press Journals Complete</source><creator>REMPE, LASSE</creator><creatorcontrib>REMPE, LASSE</creatorcontrib><description>We show that the set I(f) of points that converge to infinity under iteration of the exponential map f(z)=exp (z) is a connected subset of the complex plane.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S014338570900008X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dynamical systems ; Mathematics</subject><ispartof>Ergodic theory and dynamical systems, 2010-04, Vol.30 (2), p.595-599</ispartof><rights>Copyright © Cambridge University Press 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-84e5ee9043c5742b0e94d556c0641dde6705e6ea3a20cbfa71c6ce713ae5152f3</citedby><cites>FETCH-LOGICAL-c397t-84e5ee9043c5742b0e94d556c0641dde6705e6ea3a20cbfa71c6ce713ae5152f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S014338570900008X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>REMPE, LASSE</creatorcontrib><title>The escaping set of the exponential</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We show that the set I(f) of points that converge to infinity under iteration of the exponential map f(z)=exp (z) is a connected subset of the complex plane.</description><subject>Dynamical systems</subject><subject>Mathematics</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLeg5-hO9l9ylFarULBileJl2WwmNbVN4m4K9dubkKIHcS4D835v3jCEnAO9Agrq-pkCZywWiia0rXhxQAbAZRJyDuqQDDo57PRjcuL9qkUYKDEgl_N3DNBbUxflMvDYBFUeNN1sV1cllk1h1qfkKDdrj2f7PiQvd7fz0X04fZw8jG6moWWJasKYo0BMKGdWKB6lFBOeCSEtlRyyDKWiAiUaZiJq09wosNKiAmZQgIhyNiQX_d7aVZ9b9I1eVVtXtpE6olKAZDFrIegh6yrvHea6dsXGuC8NVHev0H9e0XrC3lP4Bnc_BuM-tFRMCS0nT3oMs8V4pt70a8uzfYbZpK7Ilvh7yf8p3_E9bZs</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>REMPE, LASSE</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201004</creationdate><title>The escaping set of the exponential</title><author>REMPE, LASSE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-84e5ee9043c5742b0e94d556c0641dde6705e6ea3a20cbfa71c6ce713ae5152f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Dynamical systems</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>REMPE, LASSE</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>REMPE, LASSE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The escaping set of the exponential</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2010-04</date><risdate>2010</risdate><volume>30</volume><issue>2</issue><spage>595</spage><epage>599</epage><pages>595-599</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We show that the set I(f) of points that converge to infinity under iteration of the exponential map f(z)=exp (z) is a connected subset of the complex plane.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S014338570900008X</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2010-04, Vol.30 (2), p.595-599
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_206516383
source Cambridge University Press Journals Complete
subjects Dynamical systems
Mathematics
title The escaping set of the exponential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20escaping%20set%20of%20the%20exponential&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=REMPE,%20LASSE&rft.date=2010-04&rft.volume=30&rft.issue=2&rft.spage=595&rft.epage=599&rft.pages=595-599&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S014338570900008X&rft_dat=%3Cproquest_cross%3E1979113481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206516383&rft_id=info:pmid/&rft_cupid=10_1017_S014338570900008X&rfr_iscdi=true