Renewal-type limit theorem for the Gauss map and continued fractions

In this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2008-04, Vol.28 (2), p.643-655
Hauptverfasser: SINAI, YAKOV G., ULCIGRAI, CORINNA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The existence of the limiting distribution uses mixing of a special flow over the natural extension of the Gauss map.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385707000466