Renewal-type limit theorem for the Gauss map and continued fractions
In this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The exist...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2008-04, Vol.28 (2), p.643-655 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The existence of the limiting distribution uses mixing of a special flow over the natural extension of the Gauss map. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385707000466 |