Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms
Let V be a finite-dimensional vector space over $\mathbb{R}$and let $\Gamma \subset \mathrm{GL}(V)$ be a semigroup. We study the closed $\Gamma$-invariant subsets of V-\{0\} under the condition that the Zariski closure of $\Gamma$ is semi-simple. We use the results to show that, if $\Gamma\subset\ma...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2004-06, Vol.24 (3), p.767-802 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let V be a finite-dimensional vector space over $\mathbb{R}$and let $\Gamma \subset \mathrm{GL}(V)$ be a semigroup. We study the closed $\Gamma$-invariant subsets of V-\{0\} under the condition that the Zariski closure of $\Gamma$ is semi-simple. We use the results to show that, if $\Gamma\subset\mathrm{SL}(\mathbb{R}^d)$ acts on $\mathbb{T}^d$ by automorphisms, then the orbits of $\Gamma$ are finite or dense. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385703000440 |