Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms

Let V be a finite-dimensional vector space over $\mathbb{R}$and let $\Gamma \subset \mathrm{GL}(V)$ be a semigroup. We study the closed $\Gamma$-invariant subsets of V-\{0\} under the condition that the Zariski closure of $\Gamma$ is semi-simple. We use the results to show that, if $\Gamma\subset\ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2004-06, Vol.24 (3), p.767-802
Hauptverfasser: GUIVARC'H, Y., STARKOV, A. N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let V be a finite-dimensional vector space over $\mathbb{R}$and let $\Gamma \subset \mathrm{GL}(V)$ be a semigroup. We study the closed $\Gamma$-invariant subsets of V-\{0\} under the condition that the Zariski closure of $\Gamma$ is semi-simple. We use the results to show that, if $\Gamma\subset\mathrm{SL}(\mathbb{R}^d)$ acts on $\mathbb{T}^d$ by automorphisms, then the orbits of $\Gamma$ are finite or dense.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385703000440