On the deformation of discrete conformal factors on surfaces
Luo (Commun Contemp Math 6:765–780, 2004 ) conjectured that the discrete Yamabe flow will converge to the constant curvature PL-metric after finite number of surgeries on the triangulation. In this paper, we prove that the flow can always be extended (without surgeries) to a solution for all time. M...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2016-12, Vol.55 (6), p.1-14, Article 136 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Luo (Commun Contemp Math 6:765–780,
2004
) conjectured that the discrete Yamabe flow will converge to the constant curvature PL-metric after finite number of surgeries on the triangulation. In this paper, we prove that the flow can always be extended (without surgeries) to a solution for all time. Moreover, we consider the convergence of such solution. We show that the extended solution converges exponentially fast to the constant curvature PL-metric if it exists. In addition, we investigate the geometric meaning of the limit of the extended solution. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-016-1070-z |