Density of polyhedral partitions

We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ R n into finitely many subsets of finite perimeter and ε > 0 , we prove that u is ε -close to a small deformation of a polyhedral decomposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2017-04, Vol.56 (2), p.1-10, Article 28
Hauptverfasser: Braides, Andrea, Conti, Sergio, Garroni, Adriana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2
container_start_page 1
container_title Calculus of variations and partial differential equations
container_volume 56
creator Braides, Andrea
Conti, Sergio
Garroni, Adriana
description We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ R n into finitely many subsets of finite perimeter and ε > 0 , we prove that u is ε -close to a small deformation of a polyhedral decomposition v ε , in the sense that there is a C 1 diffeomorphism f ε : R n → R n which is ε -close to the identity and such that u ∘ f ε - v ε is ε -small in the strong BV norm. This implies that the energy of u is close to that of v ε for a large class of energies defined on partitions.
doi_str_mv 10.1007/s00526-017-1108-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063653239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063653239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a56dd41f578265630206d81a114d9e54682d680455790b5c0fb3ad8dd85c041e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcF19H38tV0KaOOwoAbXYdMk2qH2tSkA9N_b4YKrly9u7jnPjiEXCPcIkB5lwAkUxSwpIig6eGELFBwRkFzeUoWUAlBmVLVOblIaQeAUjOxIMWD71M7TkVoiiF006d30XbFYOPYjm3o0yU5a2yX_NXvXZL3p8e31TPdvK5fVvcbWnNUI7VSOSewkaVmSioODJTTaBGFq7wUSjOnNAgpywq2soZmy63TzumcBXq-JDfz7hDD996n0ezCPvb5pclTXEnOeJVbOLfqGFKKvjFDbL9snAyCOYowswiTRZijCHPIDJuZlLv9h49_y_9DP1V3Xn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063653239</pqid></control><display><type>article</type><title>Density of polyhedral partitions</title><source>SpringerLink Journals</source><creator>Braides, Andrea ; Conti, Sergio ; Garroni, Adriana</creator><creatorcontrib>Braides, Andrea ; Conti, Sergio ; Garroni, Adriana</creatorcontrib><description>We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ R n into finitely many subsets of finite perimeter and ε &gt; 0 , we prove that u is ε -close to a small deformation of a polyhedral decomposition v ε , in the sense that there is a C 1 diffeomorphism f ε : R n → R n which is ε -close to the identity and such that u ∘ f ε - v ε is ε -small in the strong BV norm. This implies that the energy of u is close to that of v ε for a large class of energies defined on partitions.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-017-1108-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Decomposition ; Deformation ; Density ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Partitions (mathematics) ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2017-04, Vol.56 (2), p.1-10, Article 28</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a56dd41f578265630206d81a114d9e54682d680455790b5c0fb3ad8dd85c041e3</citedby><cites>FETCH-LOGICAL-c316t-a56dd41f578265630206d81a114d9e54682d680455790b5c0fb3ad8dd85c041e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-017-1108-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-017-1108-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Braides, Andrea</creatorcontrib><creatorcontrib>Conti, Sergio</creatorcontrib><creatorcontrib>Garroni, Adriana</creatorcontrib><title>Density of polyhedral partitions</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ R n into finitely many subsets of finite perimeter and ε &gt; 0 , we prove that u is ε -close to a small deformation of a polyhedral decomposition v ε , in the sense that there is a C 1 diffeomorphism f ε : R n → R n which is ε -close to the identity and such that u ∘ f ε - v ε is ε -small in the strong BV norm. This implies that the energy of u is close to that of v ε for a large class of energies defined on partitions.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Decomposition</subject><subject>Deformation</subject><subject>Density</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partitions (mathematics)</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcF19H38tV0KaOOwoAbXYdMk2qH2tSkA9N_b4YKrly9u7jnPjiEXCPcIkB5lwAkUxSwpIig6eGELFBwRkFzeUoWUAlBmVLVOblIaQeAUjOxIMWD71M7TkVoiiF006d30XbFYOPYjm3o0yU5a2yX_NXvXZL3p8e31TPdvK5fVvcbWnNUI7VSOSewkaVmSioODJTTaBGFq7wUSjOnNAgpywq2soZmy63TzumcBXq-JDfz7hDD996n0ezCPvb5pclTXEnOeJVbOLfqGFKKvjFDbL9snAyCOYowswiTRZijCHPIDJuZlLv9h49_y_9DP1V3Xn0</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Braides, Andrea</creator><creator>Conti, Sergio</creator><creator>Garroni, Adriana</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20170401</creationdate><title>Density of polyhedral partitions</title><author>Braides, Andrea ; Conti, Sergio ; Garroni, Adriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a56dd41f578265630206d81a114d9e54682d680455790b5c0fb3ad8dd85c041e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Decomposition</topic><topic>Deformation</topic><topic>Density</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partitions (mathematics)</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braides, Andrea</creatorcontrib><creatorcontrib>Conti, Sergio</creatorcontrib><creatorcontrib>Garroni, Adriana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braides, Andrea</au><au>Conti, Sergio</au><au>Garroni, Adriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density of polyhedral partitions</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>56</volume><issue>2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>28</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ R n into finitely many subsets of finite perimeter and ε &gt; 0 , we prove that u is ε -close to a small deformation of a polyhedral decomposition v ε , in the sense that there is a C 1 diffeomorphism f ε : R n → R n which is ε -close to the identity and such that u ∘ f ε - v ε is ε -small in the strong BV norm. This implies that the energy of u is close to that of v ε for a large class of energies defined on partitions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-017-1108-x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2017-04, Vol.56 (2), p.1-10, Article 28
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2063653239
source SpringerLink Journals
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Decomposition
Deformation
Density
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Partitions (mathematics)
Systems Theory
Theoretical
title Density of polyhedral partitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20of%20polyhedral%20partitions&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Braides,%20Andrea&rft.date=2017-04-01&rft.volume=56&rft.issue=2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=28&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-017-1108-x&rft_dat=%3Cproquest_cross%3E2063653239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063653239&rft_id=info:pmid/&rfr_iscdi=true