Density of polyhedral partitions
We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ R n into finitely many subsets of finite perimeter and ε > 0 , we prove that u is ε -close to a small deformation of a polyhedral decomposit...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2017-04, Vol.56 (2), p.1-10, Article 28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Calculus of variations and partial differential equations |
container_volume | 56 |
creator | Braides, Andrea Conti, Sergio Garroni, Adriana |
description | We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition
u
of a bounded Lipschitz set
Ω
⊂
R
n
into finitely many subsets of finite perimeter and
ε
>
0
, we prove that
u
is
ε
-close to a small deformation of a polyhedral decomposition
v
ε
, in the sense that there is a
C
1
diffeomorphism
f
ε
:
R
n
→
R
n
which is
ε
-close to the identity and such that
u
∘
f
ε
-
v
ε
is
ε
-small in the strong
BV
norm. This implies that the energy of
u
is close to that of
v
ε
for a large class of energies defined on partitions. |
doi_str_mv | 10.1007/s00526-017-1108-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063653239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063653239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a56dd41f578265630206d81a114d9e54682d680455790b5c0fb3ad8dd85c041e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcF19H38tV0KaOOwoAbXYdMk2qH2tSkA9N_b4YKrly9u7jnPjiEXCPcIkB5lwAkUxSwpIig6eGELFBwRkFzeUoWUAlBmVLVOblIaQeAUjOxIMWD71M7TkVoiiF006d30XbFYOPYjm3o0yU5a2yX_NXvXZL3p8e31TPdvK5fVvcbWnNUI7VSOSewkaVmSioODJTTaBGFq7wUSjOnNAgpywq2soZmy63TzumcBXq-JDfz7hDD996n0ezCPvb5pclTXEnOeJVbOLfqGFKKvjFDbL9snAyCOYowswiTRZijCHPIDJuZlLv9h49_y_9DP1V3Xn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063653239</pqid></control><display><type>article</type><title>Density of polyhedral partitions</title><source>SpringerLink Journals</source><creator>Braides, Andrea ; Conti, Sergio ; Garroni, Adriana</creator><creatorcontrib>Braides, Andrea ; Conti, Sergio ; Garroni, Adriana</creatorcontrib><description>We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition
u
of a bounded Lipschitz set
Ω
⊂
R
n
into finitely many subsets of finite perimeter and
ε
>
0
, we prove that
u
is
ε
-close to a small deformation of a polyhedral decomposition
v
ε
, in the sense that there is a
C
1
diffeomorphism
f
ε
:
R
n
→
R
n
which is
ε
-close to the identity and such that
u
∘
f
ε
-
v
ε
is
ε
-small in the strong
BV
norm. This implies that the energy of
u
is close to that of
v
ε
for a large class of energies defined on partitions.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-017-1108-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Decomposition ; Deformation ; Density ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Partitions (mathematics) ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2017-04, Vol.56 (2), p.1-10, Article 28</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a56dd41f578265630206d81a114d9e54682d680455790b5c0fb3ad8dd85c041e3</citedby><cites>FETCH-LOGICAL-c316t-a56dd41f578265630206d81a114d9e54682d680455790b5c0fb3ad8dd85c041e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-017-1108-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-017-1108-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Braides, Andrea</creatorcontrib><creatorcontrib>Conti, Sergio</creatorcontrib><creatorcontrib>Garroni, Adriana</creatorcontrib><title>Density of polyhedral partitions</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition
u
of a bounded Lipschitz set
Ω
⊂
R
n
into finitely many subsets of finite perimeter and
ε
>
0
, we prove that
u
is
ε
-close to a small deformation of a polyhedral decomposition
v
ε
, in the sense that there is a
C
1
diffeomorphism
f
ε
:
R
n
→
R
n
which is
ε
-close to the identity and such that
u
∘
f
ε
-
v
ε
is
ε
-small in the strong
BV
norm. This implies that the energy of
u
is close to that of
v
ε
for a large class of energies defined on partitions.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Decomposition</subject><subject>Deformation</subject><subject>Density</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partitions (mathematics)</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcF19H38tV0KaOOwoAbXYdMk2qH2tSkA9N_b4YKrly9u7jnPjiEXCPcIkB5lwAkUxSwpIig6eGELFBwRkFzeUoWUAlBmVLVOblIaQeAUjOxIMWD71M7TkVoiiF006d30XbFYOPYjm3o0yU5a2yX_NXvXZL3p8e31TPdvK5fVvcbWnNUI7VSOSewkaVmSioODJTTaBGFq7wUSjOnNAgpywq2soZmy63TzumcBXq-JDfz7hDD996n0ezCPvb5pclTXEnOeJVbOLfqGFKKvjFDbL9snAyCOYowswiTRZijCHPIDJuZlLv9h49_y_9DP1V3Xn0</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Braides, Andrea</creator><creator>Conti, Sergio</creator><creator>Garroni, Adriana</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20170401</creationdate><title>Density of polyhedral partitions</title><author>Braides, Andrea ; Conti, Sergio ; Garroni, Adriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a56dd41f578265630206d81a114d9e54682d680455790b5c0fb3ad8dd85c041e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Decomposition</topic><topic>Deformation</topic><topic>Density</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partitions (mathematics)</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braides, Andrea</creatorcontrib><creatorcontrib>Conti, Sergio</creatorcontrib><creatorcontrib>Garroni, Adriana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braides, Andrea</au><au>Conti, Sergio</au><au>Garroni, Adriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density of polyhedral partitions</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>56</volume><issue>2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>28</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition
u
of a bounded Lipschitz set
Ω
⊂
R
n
into finitely many subsets of finite perimeter and
ε
>
0
, we prove that
u
is
ε
-close to a small deformation of a polyhedral decomposition
v
ε
, in the sense that there is a
C
1
diffeomorphism
f
ε
:
R
n
→
R
n
which is
ε
-close to the identity and such that
u
∘
f
ε
-
v
ε
is
ε
-small in the strong
BV
norm. This implies that the energy of
u
is close to that of
v
ε
for a large class of energies defined on partitions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-017-1108-x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2017-04, Vol.56 (2), p.1-10, Article 28 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2063653239 |
source | SpringerLink Journals |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Decomposition Deformation Density Mathematical and Computational Physics Mathematics Mathematics and Statistics Partitions (mathematics) Systems Theory Theoretical |
title | Density of polyhedral partitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20of%20polyhedral%20partitions&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Braides,%20Andrea&rft.date=2017-04-01&rft.volume=56&rft.issue=2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=28&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-017-1108-x&rft_dat=%3Cproquest_cross%3E2063653239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063653239&rft_id=info:pmid/&rfr_iscdi=true |