Density of polyhedral partitions

We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ R n into finitely many subsets of finite perimeter and ε > 0 , we prove that u is ε -close to a small deformation of a polyhedral decomposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2017-04, Vol.56 (2), p.1-10, Article 28
Hauptverfasser: Braides, Andrea, Conti, Sergio, Garroni, Adriana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ R n into finitely many subsets of finite perimeter and ε > 0 , we prove that u is ε -close to a small deformation of a polyhedral decomposition v ε , in the sense that there is a C 1 diffeomorphism f ε : R n → R n which is ε -close to the identity and such that u ∘ f ε - v ε is ε -small in the strong BV norm. This implies that the energy of u is close to that of v ε for a large class of energies defined on partitions.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-017-1108-x