Symmetric Liapunov center theorem
In this article, using an infinite-dimensional equivariant Conley index, we prove a generalization of the profitable Liapunov center theorem for symmetric potentials. Consider a system ( ∗ ) q ¨ = - ∇ U ( q ) , where U ( q ) is a Γ -invariant potential and Γ is a compact Lie group acting linearly on...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2017-04, Vol.56 (2), p.1-23, Article 26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, using an infinite-dimensional equivariant Conley index, we prove a generalization of the profitable Liapunov center theorem for symmetric potentials. Consider a system
(
∗
)
q
¨
=
-
∇
U
(
q
)
, where
U
(
q
) is a
Γ
-invariant potential and
Γ
is a compact Lie group acting linearly on
R
n
. If system
(
∗
)
possess a non-degenerate orbit of stationary solutions
Γ
(
q
0
)
with trivial isotropy group, such that there exists at least one positive eigenvalue of the Hessian
∇
2
U
(
q
0
)
, then in any neighborhood of
Γ
(
q
0
)
there is a non-stationary periodic orbit of solutions of system
(
∗
)
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-017-1120-1 |