Symmetric Liapunov center theorem

In this article, using an infinite-dimensional equivariant Conley index, we prove a generalization of the profitable Liapunov center theorem for symmetric potentials. Consider a system ( ∗ ) q ¨ = - ∇ U ( q ) , where U ( q ) is a Γ -invariant potential and Γ is a compact Lie group acting linearly on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2017-04, Vol.56 (2), p.1-23, Article 26
Hauptverfasser: Pérez-Chavela, Ernesto, Rybicki, Sławomir, Strzelecki, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, using an infinite-dimensional equivariant Conley index, we prove a generalization of the profitable Liapunov center theorem for symmetric potentials. Consider a system ( ∗ ) q ¨ = - ∇ U ( q ) , where U ( q ) is a Γ -invariant potential and Γ is a compact Lie group acting linearly on R n . If system ( ∗ ) possess a non-degenerate orbit of stationary solutions Γ ( q 0 ) with trivial isotropy group, such that there exists at least one positive eigenvalue of the Hessian ∇ 2 U ( q 0 ) , then in any neighborhood of Γ ( q 0 ) there is a non-stationary periodic orbit of solutions of system ( ∗ ) .
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-017-1120-1