Crack growth rates and microstructure feature of initiation region for very‐high‐cycle fatigue of a high‐strength steel
The S‐N data up to very‐high‐cycle fatigue (VHCF) regime for a high‐strength steel were obtained by fatigue tests under constant amplitude and variable amplitude (VA) via rotating bending and electromagnetic resonance cycling. Crack initiation for VHCF was from the interior of specimens, and the ini...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2018-08, Vol.41 (8), p.1717-1732 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The S‐N data up to very‐high‐cycle fatigue (VHCF) regime for a high‐strength steel were obtained by fatigue tests under constant amplitude and variable amplitude (VA) via rotating bending and electromagnetic resonance cycling. Crack initiation for VHCF was from the interior of specimens, and the initiation region was carefully examined by scanning electron microscopy and transmission electron microscopy. Crack growth traces in the initiation region of fine‐granular‐area (FGA) were the first time captured for the specimens under VA cycling by rotating bending. The obtained crack growth rates in FGA were upwards to connect well with those in fish‐eye region available in the literature and were associated well with the calculated equivalent crack growth rates in FGA. The observations of profile samples revealed that FGA is a nanograin layer for the specimens under VA cycling, which is a new evidence to support the previously proposed “numerous cyclic pressing” model. |
---|---|
ISSN: | 8756-758X 1460-2695 |
DOI: | 10.1111/ffe.12811 |