Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds
This paper is divided into two parts: In the main deterministic part, we prove that for an open domain D ⊂ R d with d ≥ 2 , for every (measurable) uniformly elliptic tensor field a and for almost every point y ∈ D , there exists a unique Green’s function centred in y associated to the vectorial oper...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2017-12, Vol.56 (6), p.1-51, Article 163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Calculus of variations and partial differential equations |
container_volume | 56 |
creator | Conlon, Joseph G. Giunti, Arianna Otto, Felix |
description | This paper is divided into two parts: In the main deterministic part, we prove that for an open domain
D
⊂
R
d
with
d
≥
2
, for every (measurable) uniformly elliptic tensor field
a
and for almost every point
y
∈
D
, there exists a unique Green’s function centred in
y
associated to the vectorial operator
-
∇
·
a
∇
in
D
. This result implies the existence of the fundamental solution for elliptic systems when
d
>
2
, i.e. the Green function for
-
∇
·
a
∇
in
R
d
. In the second part, we introduce a shift-invariant ensemble
⟨
·
⟩
over the set of uniformly elliptic tensor fields, and infer for the fundamental solution
G
some pointwise bounds for
⟨
|
G
(
·
;
x
,
y
)
|
⟩
,
⟨
|
∇
x
G
(
·
;
x
,
y
)
|
⟩
and
⟨
|
∇
x
∇
y
G
(
·
;
x
,
y
)
|
⟩
. These estimates scale optimally in space and provide a generalisation to systems of the bounds obtained by Delmotte and Deuschel for the scalar case. |
doi_str_mv | 10.1007/s00526-017-1255-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063554166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063554166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ca795ae2bf70a6597c1fafdc092a2fe002c7bd9a25c904721da26e841633a3e83</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4C7gevQlmWQm7qTVKhRE0HVIMy86ZZqpyQzorv_gyt_rlzilgitX7y7OvQ8OIecMLhlAcZUAJFcZsCJjXMoMDsiI5YJnUAp5SEag8zzjSuljcpLSEoDJkucj8jSLiGG7-U7U98F1dRuobyPFpqnXXe1o-kwdrtI1xY96SMEhtaGiU2xWbdfhdvM1xT65N2zoou1DlU7JkbdNwrPfOyYvd7fPk_ts_jh7mNzMMyek7jJnCy0t8oUvwCqpC8e89ZUDzS33CMBdsai05dJpyAvOKssVljlTQliBpRiTi_3uOrbvPabOLNs-huGl4aCElAOqBortKRfblCJ6s471ysZPw8DszJm9OTOYMztzBoYO33fSwIZXjH_L_5d-ADv1cys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063554166</pqid></control><display><type>article</type><title>Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Conlon, Joseph G. ; Giunti, Arianna ; Otto, Felix</creator><creatorcontrib>Conlon, Joseph G. ; Giunti, Arianna ; Otto, Felix</creatorcontrib><description>This paper is divided into two parts: In the main deterministic part, we prove that for an open domain
D
⊂
R
d
with
d
≥
2
, for every (measurable) uniformly elliptic tensor field
a
and for almost every point
y
∈
D
, there exists a unique Green’s function centred in
y
associated to the vectorial operator
-
∇
·
a
∇
in
D
. This result implies the existence of the fundamental solution for elliptic systems when
d
>
2
, i.e. the Green function for
-
∇
·
a
∇
in
R
d
. In the second part, we introduce a shift-invariant ensemble
⟨
·
⟩
over the set of uniformly elliptic tensor fields, and infer for the fundamental solution
G
some pointwise bounds for
⟨
|
G
(
·
;
x
,
y
)
|
⟩
,
⟨
|
∇
x
G
(
·
;
x
,
y
)
|
⟩
and
⟨
|
∇
x
∇
y
G
(
·
;
x
,
y
)
|
⟩
. These estimates scale optimally in space and provide a generalisation to systems of the bounds obtained by Delmotte and Deuschel for the scalar case.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-017-1255-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Green's functions ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2017-12, Vol.56 (6), p.1-51, Article 163</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-ca795ae2bf70a6597c1fafdc092a2fe002c7bd9a25c904721da26e841633a3e83</citedby><cites>FETCH-LOGICAL-c359t-ca795ae2bf70a6597c1fafdc092a2fe002c7bd9a25c904721da26e841633a3e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-017-1255-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-017-1255-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Conlon, Joseph G.</creatorcontrib><creatorcontrib>Giunti, Arianna</creatorcontrib><creatorcontrib>Otto, Felix</creatorcontrib><title>Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>This paper is divided into two parts: In the main deterministic part, we prove that for an open domain
D
⊂
R
d
with
d
≥
2
, for every (measurable) uniformly elliptic tensor field
a
and for almost every point
y
∈
D
, there exists a unique Green’s function centred in
y
associated to the vectorial operator
-
∇
·
a
∇
in
D
. This result implies the existence of the fundamental solution for elliptic systems when
d
>
2
, i.e. the Green function for
-
∇
·
a
∇
in
R
d
. In the second part, we introduce a shift-invariant ensemble
⟨
·
⟩
over the set of uniformly elliptic tensor fields, and infer for the fundamental solution
G
some pointwise bounds for
⟨
|
G
(
·
;
x
,
y
)
|
⟩
,
⟨
|
∇
x
G
(
·
;
x
,
y
)
|
⟩
and
⟨
|
∇
x
∇
y
G
(
·
;
x
,
y
)
|
⟩
. These estimates scale optimally in space and provide a generalisation to systems of the bounds obtained by Delmotte and Deuschel for the scalar case.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Green's functions</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kMFKAzEURYMoWKsf4C7gevQlmWQm7qTVKhRE0HVIMy86ZZqpyQzorv_gyt_rlzilgitX7y7OvQ8OIecMLhlAcZUAJFcZsCJjXMoMDsiI5YJnUAp5SEag8zzjSuljcpLSEoDJkucj8jSLiGG7-U7U98F1dRuobyPFpqnXXe1o-kwdrtI1xY96SMEhtaGiU2xWbdfhdvM1xT65N2zoou1DlU7JkbdNwrPfOyYvd7fPk_ts_jh7mNzMMyek7jJnCy0t8oUvwCqpC8e89ZUDzS33CMBdsai05dJpyAvOKssVljlTQliBpRiTi_3uOrbvPabOLNs-huGl4aCElAOqBortKRfblCJ6s471ysZPw8DszJm9OTOYMztzBoYO33fSwIZXjH_L_5d-ADv1cys</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Conlon, Joseph G.</creator><creator>Giunti, Arianna</creator><creator>Otto, Felix</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20171201</creationdate><title>Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds</title><author>Conlon, Joseph G. ; Giunti, Arianna ; Otto, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ca795ae2bf70a6597c1fafdc092a2fe002c7bd9a25c904721da26e841633a3e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Green's functions</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conlon, Joseph G.</creatorcontrib><creatorcontrib>Giunti, Arianna</creatorcontrib><creatorcontrib>Otto, Felix</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conlon, Joseph G.</au><au>Giunti, Arianna</au><au>Otto, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>56</volume><issue>6</issue><spage>1</spage><epage>51</epage><pages>1-51</pages><artnum>163</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>This paper is divided into two parts: In the main deterministic part, we prove that for an open domain
D
⊂
R
d
with
d
≥
2
, for every (measurable) uniformly elliptic tensor field
a
and for almost every point
y
∈
D
, there exists a unique Green’s function centred in
y
associated to the vectorial operator
-
∇
·
a
∇
in
D
. This result implies the existence of the fundamental solution for elliptic systems when
d
>
2
, i.e. the Green function for
-
∇
·
a
∇
in
R
d
. In the second part, we introduce a shift-invariant ensemble
⟨
·
⟩
over the set of uniformly elliptic tensor fields, and infer for the fundamental solution
G
some pointwise bounds for
⟨
|
G
(
·
;
x
,
y
)
|
⟩
,
⟨
|
∇
x
G
(
·
;
x
,
y
)
|
⟩
and
⟨
|
∇
x
∇
y
G
(
·
;
x
,
y
)
|
⟩
. These estimates scale optimally in space and provide a generalisation to systems of the bounds obtained by Delmotte and Deuschel for the scalar case.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-017-1255-0</doi><tpages>51</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2017-12, Vol.56 (6), p.1-51, Article 163 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2063554166 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Green's functions Mathematical and Computational Physics Mathematics Mathematics and Statistics Systems Theory Theoretical |
title | Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%E2%80%99s%20function%20for%20elliptic%20systems:%20existence%20and%20Delmotte%E2%80%93Deuschel%20bounds&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Conlon,%20Joseph%20G.&rft.date=2017-12-01&rft.volume=56&rft.issue=6&rft.spage=1&rft.epage=51&rft.pages=1-51&rft.artnum=163&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-017-1255-0&rft_dat=%3Cproquest_cross%3E2063554166%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063554166&rft_id=info:pmid/&rfr_iscdi=true |