Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds
This paper is divided into two parts: In the main deterministic part, we prove that for an open domain D ⊂ R d with d ≥ 2 , for every (measurable) uniformly elliptic tensor field a and for almost every point y ∈ D , there exists a unique Green’s function centred in y associated to the vectorial oper...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2017-12, Vol.56 (6), p.1-51, Article 163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is divided into two parts: In the main deterministic part, we prove that for an open domain
D
⊂
R
d
with
d
≥
2
, for every (measurable) uniformly elliptic tensor field
a
and for almost every point
y
∈
D
, there exists a unique Green’s function centred in
y
associated to the vectorial operator
-
∇
·
a
∇
in
D
. This result implies the existence of the fundamental solution for elliptic systems when
d
>
2
, i.e. the Green function for
-
∇
·
a
∇
in
R
d
. In the second part, we introduce a shift-invariant ensemble
⟨
·
⟩
over the set of uniformly elliptic tensor fields, and infer for the fundamental solution
G
some pointwise bounds for
⟨
|
G
(
·
;
x
,
y
)
|
⟩
,
⟨
|
∇
x
G
(
·
;
x
,
y
)
|
⟩
and
⟨
|
∇
x
∇
y
G
(
·
;
x
,
y
)
|
⟩
. These estimates scale optimally in space and provide a generalisation to systems of the bounds obtained by Delmotte and Deuschel for the scalar case. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-017-1255-0 |