Translation of IEC 61131-3 Function Block Diagrams to PVS for Formal Verification with Real-Time Nuclear Application

The trip computers for the two reactor shutdown systems of the Ontario Power Generation (OPG) Darlington Nuclear Power Generating Station are being refurbished due to hardware obsolescence. For one of the systems, the general purpose computer originally used is being replaced by a programmable logic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning 2018, Vol.60 (1), p.63-84
Hauptverfasser: Newell, Josh, Pang, Linna, Tremaine, David, Wassyng, Alan, Lawford, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The trip computers for the two reactor shutdown systems of the Ontario Power Generation (OPG) Darlington Nuclear Power Generating Station are being refurbished due to hardware obsolescence. For one of the systems, the general purpose computer originally used is being replaced by a programmable logic controller (PLC). The trip computer application software has been rewritten using function block diagrams (FBDs), a commonly used PLC programming language defined in the IEC 61131-3 standard. The replacement project’s quality assurance program requires that formal verification be performed to compare the FBDs against a formal software requirements specification written using tabular expressions (TEs). The PVS theorem proving tool is used in formal verification. Custom tools developed for OPG are used to translate TEs and FBDs into PVS code. In this paper, we present a method to rigorously translate the graphical FBD language to a mathematical model in PVS using an abstract syntax to represent the FBD constructs. We use an example from the replacement project to demonstrate the use of the model to translate a FBD module into a PVS specification. We then extend that example to demonstrate the method’s applicability to a Simulink-based design.
ISSN:0168-7433
1573-0670
DOI:10.1007/s10817-017-9415-7