A reaction-diffusion system of $\lambda$–$\omega$ type Part I: Mathematical analysis
We study two coupled reaction-diffusion equations of the $\lambda$–$\omega$ type [11] in $d\,{\le}\,3$ space dimensions, on a convex bounded domain with a $C^2$ boundary. The equations are close to a supercritical Hopf bifurcation in the reaction kinetics and are model equations for oscillatory reac...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2005-02, Vol.16 (1), p.1-19 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study two coupled reaction-diffusion equations of the $\lambda$–$\omega$ type [11] in $d\,{\le}\,3$ space dimensions, on a convex bounded domain with a $C^2$ boundary. The equations are close to a supercritical Hopf bifurcation in the reaction kinetics and are model equations for oscillatory reaction-diffusion equations. Global existence, uniqueness and continuous dependence on initial data of strong and weak solutions are proved using the classical Faedo-Galerkin method of Lions [15] and compactness arguments. We also present a complete case study for the application of this method to systems of nonlinear reaction-diffusion equations. |
---|---|
ISSN: | 0956-7925 1469-4425 |
DOI: | 10.1017/S0956792504005534 |