A reaction-diffusion system of $\lambda$–$\omega$ type Part I: Mathematical analysis

We study two coupled reaction-diffusion equations of the $\lambda$–$\omega$ type [11] in $d\,{\le}\,3$ space dimensions, on a convex bounded domain with a $C^2$ boundary. The equations are close to a supercritical Hopf bifurcation in the reaction kinetics and are model equations for oscillatory reac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied mathematics 2005-02, Vol.16 (1), p.1-19
Hauptverfasser: BLOWEY, JAMES F., GARVIE, MARCUS R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study two coupled reaction-diffusion equations of the $\lambda$–$\omega$ type [11] in $d\,{\le}\,3$ space dimensions, on a convex bounded domain with a $C^2$ boundary. The equations are close to a supercritical Hopf bifurcation in the reaction kinetics and are model equations for oscillatory reaction-diffusion equations. Global existence, uniqueness and continuous dependence on initial data of strong and weak solutions are proved using the classical Faedo-Galerkin method of Lions [15] and compactness arguments. We also present a complete case study for the application of this method to systems of nonlinear reaction-diffusion equations.
ISSN:0956-7925
1469-4425
DOI:10.1017/S0956792504005534