High‐Q microwave ceramics of Li2TiO3 co‐doped with magnesium and niobium
In order to solve the problems of acceptor/donor individual doping in Li2TiO3 system and clarify the superiority mechanism of co‐doping for improving the Q value, Mg + Nb co‐doped Li2TiO3 have been designed and sintered at a medium temperature of 1260°C. The effects of each Mg/Nb ion on structure, m...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2018-09, Vol.101 (9), p.4066-4075 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to solve the problems of acceptor/donor individual doping in Li2TiO3 system and clarify the superiority mechanism of co‐doping for improving the Q value, Mg + Nb co‐doped Li2TiO3 have been designed and sintered at a medium temperature of 1260°C. The effects of each Mg/Nb ion on structure, morphology, grain‐boundary resistance and microwave dielectric properties are investigated. The substitution of (Mg1/3Nb2/3)4+ inhibits not only the diffusion of Li+ and reduction in Ti4+, but also the formation of microcracks in ceramics, which promotes the enhancement of Q value. The experiments reveal that Q × f value of Li2TiO3 ceramics co‐doped with magnesium and niobium is 113 774 GHz (at 8.573 GHz), which is increased by 113% compared with the pure Li2TiO3 ceramics. And the co‐doped ceramics have an appropriate dielectric constant of 19.01 and a near‐zero resonance frequency temperature coefficient of 13.38 ppm/°C. These results offer a scientific basis for co‐doping in Li2TiO3 system, and the outstanding performance of (Mg + Nb) co‐doped ceramics provides a solid foundation for widespread applications of microwave substrates, resonators, filters and patch antennas in modern wireless communication equipments. |
---|---|
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/jace.15579 |