Distributed Multirobot Exploration Based on Scene Partitioning and Frontier Selection
In mobile robotics, the exploration task consists of navigating through an unknown environment and building a representation of it. The mobile robot community has developed many approaches to solve this problem. These methods are mainly based on two key ideas. The first one is the selection of promi...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-17 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In mobile robotics, the exploration task consists of navigating through an unknown environment and building a representation of it. The mobile robot community has developed many approaches to solve this problem. These methods are mainly based on two key ideas. The first one is the selection of promising regions to explore and the second is the minimization of a cost function involving the distance traveled by the robots, the time it takes for them to finish the exploration, and others. An option to solve the exploration problem is the use of multiple robots to reduce the time needed for the task and to add fault tolerance to the system. We propose a new method to explore unknown areas, by using a scene partitioning scheme and assigning weights to the frontiers between explored and unknown areas. Energy consumption is always a concern during the exploration, for this reason our method is a distributed algorithm, which helps to reduce the number of communications between robots. By using this approach, we also effectively reduce the time needed to explore unknown regions and the distance traveled by each robot. We performed comparisons of our approach with state-of-the-art methods, obtaining a visible advantage over other works. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2018/2373642 |