Determination of Antimicrobial Residues in Honey by Liquid Chromatography Tandem Mass Spectrometry

Antibiotics are generally used worldwide against bacterial diseases in the treatment of food-producing animals. Since the residues of active agents or their metabolites can appear in these foods, the European Union, for instance, has set maximum residue limit concentrations for authorised veterinary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food analytical methods 2018-08, Vol.11 (8), p.2043-2055
Hauptverfasser: Tölgyesi, Ádám, Barta, Enikő, Sohn, Mary, Sharma, Virender K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibiotics are generally used worldwide against bacterial diseases in the treatment of food-producing animals. Since the residues of active agents or their metabolites can appear in these foods, the European Union, for instance, has set maximum residue limit concentrations for authorised veterinary drugs in foodstuffs. However, as yet, regulatory limits have not been established for honey and thus far, only recommendations exist. The aim of this study is to present a multiscreening method for residues in honey for the determination of 36 antimicrobial residues associated with several antibiotics of the B1 group (sulfonamides, trimethoprim, aminoglycosides, tetracyclines, quinolones and lincomycin) as well as the antibiotic griseofulvin. During the screening analysis, samples are hydrolysed in an acidified medium, purified on polymeric solid-phase extraction cartridges and subsequently analysed by reversed phase ion pair liquid chromatography tandem mass spectrometry. The liquid chromatographic separation was optimised by computer simulation with DryLab software. The positive identification of target compounds in suspicious samples was confirmed using earlier developed antibiotic class specific methods of which the aminoglycoside method is herein described in detail. The developed approaches were then applied to samples in the national monitoring program after their successful validation. Moreover, the screening and confirmatory methods were applied to proficiency test samples resulting in satisfactory identification and quantification. However, the analysis of real samples revealed that co-eluting target compounds can have considerable influence on the accuracy of this semi-quantitative multiscreening method.
ISSN:1936-9751
1936-976X
DOI:10.1007/s12161-018-1166-5