Beringian paleocology inferred from permafrost-preserved fungal DNA

The diversity of fungi in permanently frozen soil from northeastern Siberia was studied by culture-independent PCR amplification of diverse environmental 18S rRNA genes. Elaborate protocols to avoid contamination during drilling, sampling, and amplification were used. A broad diversity of eukaryotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2005-02, Vol.71 (2), p.1012
Hauptverfasser: Lydolph, Magnus C, Jacobsen, Jonas, Arctander, Peter, Gilbert, M Thomas P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The diversity of fungi in permanently frozen soil from northeastern Siberia was studied by culture-independent PCR amplification of diverse environmental 18S rRNA genes. Elaborate protocols to avoid contamination during drilling, sampling, and amplification were used. A broad diversity of eukaryotic DNA sequences that were 510 bp long, including sequences of various fungi, plants, and invertebrates, could be obtained reproducibly from samples that were up to 300,000 to 400,000 years old. The sequences revealed that ancient fungal communities included a diversity of cold-adapted yeasts, dark-pigmented fungi, plant-parasitic fungi, and lichen mycobionts. DNA traces of tree-associated macrofungi in a modern tundra sample indicated that there was a shift in fungal diversity following the last ice age and supported recent results showing that there was a severe change in the plant composition in northeastern Siberia during this period. Interestingly, DNA sequences with high homology to sequences of coprophilic and keratinophilic fungi indicated that feces, hair, skin, and nails could have been sources of ancient megafauna DNA recently reported to be present in small amounts of Siberian permafrost sediments. [PUBLICATION ABSTRACT]
ISSN:0099-2240
1098-5336