Integrated Bioprocessing for the pH-Dependent Production of 4-Valerolactone from Levulinate in Pseudomonas putida KT2440
Enzymes are powerful biocatalysts capable of performing specific chemical transformations under mild conditions, yet as catalysts they remain subject to the laws of thermodynamics, namely, that they cannot catalyze chemical reactions beyond equilibrium. Here we report the phenomenon and application...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2010-01, Vol.76 (2), p.417-424 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enzymes are powerful biocatalysts capable of performing specific chemical transformations under mild conditions, yet as catalysts they remain subject to the laws of thermodynamics, namely, that they cannot catalyze chemical reactions beyond equilibrium. Here we report the phenomenon and application of using extracytosolic enzymes and medium conditions, such as pH, to catalyze metabolic pathways beyond their intracellular catalytic limitations. This methodology, termed "integrated bioprocessing" because it integrates intracellular and extracytosolic catalysis, was applied to a lactonization reaction in Pseudomonas putida for the economical and high-titer biosynthesis of 4-valerolactone from the inexpensive and renewable source levulinic acid. Mutant paraoxonase I (PON1) was expressed in P. putida, shown to export from the cytosol in Escherichia coli and P. putida using an N-terminal sequence, and demonstrated to catalyze the extracytosolic and pH-dependent lactonization of 4-hydroxyvalerate to 4-valerolactone. With this production system, the titer of 4-valerolactone was enhanced substantially in acidic medium using extracytosolically expressed lactonase versus an intracellular lactonase: from |
---|---|
ISSN: | 0099-2240 1098-5336 1098-6596 |
DOI: | 10.1128/AEM.01769-09 |