Classifying Degraded Modern Polymeric Museum Artefacts by Their Smell
The use of VOC analysis to diagnose degradation in modern polymeric museum artefacts is reported. Volatile organic compound (VOC) analysis is a successful method for diagnosing medical conditions but to date has found little application in museums. Modern polymers are increasingly found in museum co...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2018-06, Vol.130 (25), p.7458-7462 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of VOC analysis to diagnose degradation in modern polymeric museum artefacts is reported. Volatile organic compound (VOC) analysis is a successful method for diagnosing medical conditions but to date has found little application in museums. Modern polymers are increasingly found in museum collections but pose serious conservation difficulties owing to unstable and widely varying formulations. Solid‐phase microextraction gas chromatography/mass spectrometry and linear discriminant analysis were used to classify samples according to the length of time they had been artificially degraded. Accuracies in classification of 50–83 % were obtained after validation with separate test sets. The method was applied to three artefacts from collections at Tate to detect evidence of degradation. This approach could be used for any material in heritage collections and more widely in the field of polymer degradation.
Ein Hauch von Verfall: Die Analyse flüchtiger organischer Verbindungen (VOCs) wird verbreitet zur Diagnose von Krankheiten angewendet, der Ansatz eignet sich darüber hinaus aber auch zur Bestimmung des Zustands von Kulturgütern. Die VOC‐Analyse wird als Messverfahren für den Verfall moderner Kunstwerke aus Plastik getestet; einige der untersuchten Objekte stammen aus der Tate‐Sammlung. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.201712278 |