Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling

New methods to measure thiol oxidation show that redox compartmentation functions as a mechanism for specificity in redox signaling and oxidative stress. Redox Western analysis and redox-sensitive green fluorescent proteins provide means to quantify thiol/disulfide redox changes in specific subcellu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of pharmacology and toxicology 2006-01, Vol.46 (1), p.215-234
Hauptverfasser: HANSEN, Jason M, GO, Young-Mi, JONES, Dean P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New methods to measure thiol oxidation show that redox compartmentation functions as a mechanism for specificity in redox signaling and oxidative stress. Redox Western analysis and redox-sensitive green fluorescent proteins provide means to quantify thiol/disulfide redox changes in specific subcellular compartments. Analyses using these techniques show that the relative redox states from most reducing to most oxidizing are mitochondria > nuclei > cytoplasm > endoplasmic reticulum > extracellular space. Mitochondrial thiols are an important target of oxidant-induced apoptosis and necrosis and are especially vulnerable to oxidation because of the relatively alkaline pH. Maintenance of a relatively reduced nuclear redox state is critical for transcription factor binding in transcriptional activation in response to oxidative stress. The new methods are applicable to a broad range of experimental systems and their use will provide improved understanding of the pharmacologic and toxicologic actions of drugs and toxicants.
ISSN:0362-1642
1545-4304
DOI:10.1146/annurev.pharmtox.46.120604.141122