Strict K-monotonicity and K-order continuity in symmetric spaces

This paper is devoted to strict K -monotonicity and K -order continuity in symmetric spaces. Using a local approach to the geometric structure in a symmetric space E we investigate a connection between strict K -monotonicity and global convergence in measure of a sequence of the maximal functions. N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2018-07, Vol.22 (3), p.727-743
1. Verfasser: Ciesielski, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 743
container_issue 3
container_start_page 727
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 22
creator Ciesielski, Maciej
description This paper is devoted to strict K -monotonicity and K -order continuity in symmetric spaces. Using a local approach to the geometric structure in a symmetric space E we investigate a connection between strict K -monotonicity and global convergence in measure of a sequence of the maximal functions. Next, we solve an essential problem whether an existence of a point of K -order continuity in a symmetric space E on [ 0 , ∞ ) implies that the embedding E ↪ L 1 [ 0 , ∞ ) does not hold. We present a complete characterization of an equivalent condition to K -order continuity in a symmetric space E using a notion of order continuity and the fundamental function of E . We also investigate a relationship between strict K -monotonicity and K -order continuity in symmetric spaces and show some examples of Lorentz spaces and Marcinkiewicz spaces having these properties or not. Finally, we discuss a local version of a crucial correspondence between order continuity and the Kadec–Klee property for global convergence in measure in a symmetric space E .
doi_str_mv 10.1007/s11117-017-0540-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2058249447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058249447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-ab18eded01e7be1b63da5781e3eee882d70062d17cfdb0bdb09869950befa5ac3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9GZtN2kN2XxHy54UM8hTabSxSZr0j3stzelgicHHjMM7zcDj7FLhGsEkDcJc0kOk-oKuDxiC6yl4I1QeJznUtUcRSNO2VlKW4BMVbBgt29j7O1YvPAh-DAG39t-PBTGu7wK0VEsbPBj7_fTuvdFOgwDTUyRdsZSOmcnnflKdPHbl-zj4f59_cQ3r4_P67sNtyXiyE2Lihw5QJItYbsqnamlQiqJSCnhJMBKOJS2cy20WY1aNU0NLXWmNrZcsqv57i6G7z2lUW_DPvr8UguolaiaqpLZhbPLxpBSpE7vYj-YeNAIegpKz0FpmJSD0hMjZiZlr_-k-Hf5f-gHqIZrsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058249447</pqid></control><display><type>article</type><title>Strict K-monotonicity and K-order continuity in symmetric spaces</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ciesielski, Maciej</creator><creatorcontrib>Ciesielski, Maciej</creatorcontrib><description>This paper is devoted to strict K -monotonicity and K -order continuity in symmetric spaces. Using a local approach to the geometric structure in a symmetric space E we investigate a connection between strict K -monotonicity and global convergence in measure of a sequence of the maximal functions. Next, we solve an essential problem whether an existence of a point of K -order continuity in a symmetric space E on [ 0 , ∞ ) implies that the embedding E ↪ L 1 [ 0 , ∞ ) does not hold. We present a complete characterization of an equivalent condition to K -order continuity in a symmetric space E using a notion of order continuity and the fundamental function of E . We also investigate a relationship between strict K -monotonicity and K -order continuity in symmetric spaces and show some examples of Lorentz spaces and Marcinkiewicz spaces having these properties or not. Finally, we discuss a local version of a crucial correspondence between order continuity and the Kadec–Klee property for global convergence in measure in a symmetric space E .</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-017-0540-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Continuity (mathematics) ; Convergence ; Econometrics ; Fourier Analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2018-07, Vol.22 (3), p.727-743</ispartof><rights>The Author(s) 2017</rights><rights>Positivity is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-ab18eded01e7be1b63da5781e3eee882d70062d17cfdb0bdb09869950befa5ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-017-0540-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-017-0540-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Ciesielski, Maciej</creatorcontrib><title>Strict K-monotonicity and K-order continuity in symmetric spaces</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>This paper is devoted to strict K -monotonicity and K -order continuity in symmetric spaces. Using a local approach to the geometric structure in a symmetric space E we investigate a connection between strict K -monotonicity and global convergence in measure of a sequence of the maximal functions. Next, we solve an essential problem whether an existence of a point of K -order continuity in a symmetric space E on [ 0 , ∞ ) implies that the embedding E ↪ L 1 [ 0 , ∞ ) does not hold. We present a complete characterization of an equivalent condition to K -order continuity in a symmetric space E using a notion of order continuity and the fundamental function of E . We also investigate a relationship between strict K -monotonicity and K -order continuity in symmetric spaces and show some examples of Lorentz spaces and Marcinkiewicz spaces having these properties or not. Finally, we discuss a local version of a crucial correspondence between order continuity and the Kadec–Klee property for global convergence in measure in a symmetric space E .</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Continuity (mathematics)</subject><subject>Convergence</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9GZtN2kN2XxHy54UM8hTabSxSZr0j3stzelgicHHjMM7zcDj7FLhGsEkDcJc0kOk-oKuDxiC6yl4I1QeJznUtUcRSNO2VlKW4BMVbBgt29j7O1YvPAh-DAG39t-PBTGu7wK0VEsbPBj7_fTuvdFOgwDTUyRdsZSOmcnnflKdPHbl-zj4f59_cQ3r4_P67sNtyXiyE2Lihw5QJItYbsqnamlQiqJSCnhJMBKOJS2cy20WY1aNU0NLXWmNrZcsqv57i6G7z2lUW_DPvr8UguolaiaqpLZhbPLxpBSpE7vYj-YeNAIegpKz0FpmJSD0hMjZiZlr_-k-Hf5f-gHqIZrsg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Ciesielski, Maciej</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Strict K-monotonicity and K-order continuity in symmetric spaces</title><author>Ciesielski, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-ab18eded01e7be1b63da5781e3eee882d70062d17cfdb0bdb09869950befa5ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Continuity (mathematics)</topic><topic>Convergence</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciesielski, Maciej</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciesielski, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strict K-monotonicity and K-order continuity in symmetric spaces</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>22</volume><issue>3</issue><spage>727</spage><epage>743</epage><pages>727-743</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>This paper is devoted to strict K -monotonicity and K -order continuity in symmetric spaces. Using a local approach to the geometric structure in a symmetric space E we investigate a connection between strict K -monotonicity and global convergence in measure of a sequence of the maximal functions. Next, we solve an essential problem whether an existence of a point of K -order continuity in a symmetric space E on [ 0 , ∞ ) implies that the embedding E ↪ L 1 [ 0 , ∞ ) does not hold. We present a complete characterization of an equivalent condition to K -order continuity in a symmetric space E using a notion of order continuity and the fundamental function of E . We also investigate a relationship between strict K -monotonicity and K -order continuity in symmetric spaces and show some examples of Lorentz spaces and Marcinkiewicz spaces having these properties or not. Finally, we discuss a local version of a crucial correspondence between order continuity and the Kadec–Klee property for global convergence in measure in a symmetric space E .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-017-0540-7</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2018-07, Vol.22 (3), p.727-743
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_2058249447
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Calculus of Variations and Optimal Control
Optimization
Continuity (mathematics)
Convergence
Econometrics
Fourier Analysis
Mathematics
Mathematics and Statistics
Operator Theory
Potential Theory
title Strict K-monotonicity and K-order continuity in symmetric spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strict%20K-monotonicity%20and%20K-order%20continuity%20in%20symmetric%20spaces&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Ciesielski,%20Maciej&rft.date=2018-07-01&rft.volume=22&rft.issue=3&rft.spage=727&rft.epage=743&rft.pages=727-743&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-017-0540-7&rft_dat=%3Cproquest_cross%3E2058249447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058249447&rft_id=info:pmid/&rfr_iscdi=true