Strict K-monotonicity and K-order continuity in symmetric spaces

This paper is devoted to strict K -monotonicity and K -order continuity in symmetric spaces. Using a local approach to the geometric structure in a symmetric space E we investigate a connection between strict K -monotonicity and global convergence in measure of a sequence of the maximal functions. N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2018-07, Vol.22 (3), p.727-743
1. Verfasser: Ciesielski, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to strict K -monotonicity and K -order continuity in symmetric spaces. Using a local approach to the geometric structure in a symmetric space E we investigate a connection between strict K -monotonicity and global convergence in measure of a sequence of the maximal functions. Next, we solve an essential problem whether an existence of a point of K -order continuity in a symmetric space E on [ 0 , ∞ ) implies that the embedding E ↪ L 1 [ 0 , ∞ ) does not hold. We present a complete characterization of an equivalent condition to K -order continuity in a symmetric space E using a notion of order continuity and the fundamental function of E . We also investigate a relationship between strict K -monotonicity and K -order continuity in symmetric spaces and show some examples of Lorentz spaces and Marcinkiewicz spaces having these properties or not. Finally, we discuss a local version of a crucial correspondence between order continuity and the Kadec–Klee property for global convergence in measure in a symmetric space E .
ISSN:1385-1292
1572-9281
DOI:10.1007/s11117-017-0540-7