Regularized limit of determinants for discrete tori
We consider a combinatorial Laplace operator on a sequence of discrete graphs which approximates the m -dimensional torus when the discretization parameter tends to infinity. We establish a polyhomogeneous expansion of the resolvent trace for the family of discrete graphs, jointly in the resolvent a...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2018-07, Vol.186 (3), p.539-557 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a combinatorial Laplace operator on a sequence of discrete graphs which approximates the
m
-dimensional torus when the discretization parameter tends to infinity. We establish a polyhomogeneous expansion of the resolvent trace for the family of discrete graphs, jointly in the resolvent and the discretization parameter. Based on a result about interchanging regularized limits and regularized integrals, we compare the regularized limit of the log-determinants of the combinatorial Laplacian on the sequence of discrete graphs with the logarithm of the zeta determinant for the Laplace Beltrami operator on the
m
-dimensional torus. In a similar manner we may apply our method to compare the product of the first
N
∈
N
non-zero eigenvalues of the Laplacian on a torus (or any other smooth manifold with an explicitly known spectrum) with the zeta-regularized determinant of the Laplacian in the regularized limit as
N
→
∞
. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-017-1083-5 |