Regularized limit of determinants for discrete tori

We consider a combinatorial Laplace operator on a sequence of discrete graphs which approximates the m -dimensional torus when the discretization parameter tends to infinity. We establish a polyhomogeneous expansion of the resolvent trace for the family of discrete graphs, jointly in the resolvent a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2018-07, Vol.186 (3), p.539-557
1. Verfasser: Vertman, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a combinatorial Laplace operator on a sequence of discrete graphs which approximates the m -dimensional torus when the discretization parameter tends to infinity. We establish a polyhomogeneous expansion of the resolvent trace for the family of discrete graphs, jointly in the resolvent and the discretization parameter. Based on a result about interchanging regularized limits and regularized integrals, we compare the regularized limit of the log-determinants of the combinatorial Laplacian on the sequence of discrete graphs with the logarithm of the zeta determinant for the Laplace Beltrami operator on the m -dimensional torus. In a similar manner we may apply our method to compare the product of the first N ∈ N non-zero eigenvalues of the Laplacian on a torus (or any other smooth manifold with an explicitly known spectrum) with the zeta-regularized determinant of the Laplacian in the regularized limit as N → ∞ .
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-017-1083-5