Revised Geometric Measure of Entanglement in Infinite Dimensional Multipartite Quantum Systems

In Cao and Wang (J. Phys.: Math. Theor. 40 , 3507–3542, 2007 ), the revised geometric measure of entanglement (RGME) for states in finite dimensional bipartite quantum systems was proposed. Furthermore, in Cao and Wang (Commun. Theor. Phys. 51 (4), 613–620, 2009 ), the authors obtained the revised g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2018-08, Vol.57 (8), p.2556-2562
Hauptverfasser: Wang, Yinzhu, Wang, Danxia, Huang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Cao and Wang (J. Phys.: Math. Theor. 40 , 3507–3542, 2007 ), the revised geometric measure of entanglement (RGME) for states in finite dimensional bipartite quantum systems was proposed. Furthermore, in Cao and Wang (Commun. Theor. Phys. 51 (4), 613–620, 2009 ), the authors obtained the revised geometry measure of entanglement for multipartite states including three-qubit GHZ state, W state, and the generalized Smolin state in the presence of noise and the two-mode squeezed thermal state, and defined the Gaussian geometric entanglement measure. In this paper, we generalize the RGME to infinite dimensional multipartite quantum systems, and prove that this measure satisfies some necessary properties as a well-defined entanglement measure, including monotonicity under local operations and classical communications.
ISSN:0020-7748
1572-9575
DOI:10.1007/s10773-018-3777-4