High resolution, binder-free investigation of the intrinsic activity of immobilized NiFe LDH nanoparticles on etched carbon nanoelectrodes

The determination of the intrinsic properties of nanomaterials is essential for their optimization as electrocatalysts, however it poses great challenges from the standpoint of analytical tools and methods. Herein, we report a novel methodology that allows for a binder-free investigation of electroc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2018-11, Vol.11 (11), p.6034-6044
Hauptverfasser: Wilde, Patrick, Barwe, Stefan, Andronescu, Corina, Schuhmann, Wolfgang, Ventosa, Edgar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The determination of the intrinsic properties of nanomaterials is essential for their optimization as electrocatalysts, however it poses great challenges from the standpoint of analytical tools and methods. Herein, we report a novel methodology that allows for a binder-free investigation of electrocatalyst nanoparticles. The potential-assisted immobilization of a non-noble metal catalyst, i.e., nickel-iron layered double hydroxide (NiFe LDH) nanoparticles, was employed to directly attach small nanoparticle ensembles from a suspension to the surface of etched carbon nanoelectrodes. The dimensions of this type of electrodes allowed for the immobilization of the catalyst material below the picogram scale and resulted in a high resolution towards the faradaic current response. In addition the effect of the electrochemical aging on the intrinsic activity of the catalyst was investigated in alkaline media by means of continuous cyclic voltammetry. A change in the material properties could be observed, which was accompanied by a substantial decrease in its intrinsic activity.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-018-2119-4