Assessment of Key Environmental Factors Influencing the Sedimentation and Aggregation Behavior of Zinc Oxide Nanoparticles in Aquatic Environment
Zinc oxide nanoparticles (ZnO NPs) are among the most widely used engineered nanoparticles (ENPs) in various commercial sectors to achieve both social and economic benefits. The post-use release of these NPs to the environment is inevitable, and may pose threat to the human and eco-system. In the pr...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2018-05, Vol.10 (5), p.660 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zinc oxide nanoparticles (ZnO NPs) are among the most widely used engineered nanoparticles (ENPs) in various commercial sectors to achieve both social and economic benefits. The post-use release of these NPs to the environment is inevitable, and may pose threat to the human and eco-system. In the present study, we investigated the influence of single and multiple environmental factors on sedimentation behavior of ZnO NPs. The fractional-factorial method based on Taguchi orthogonal array (OA) L[sub.27](3[sup.13]) design matrix was used for systematic investigation on the contribution and significance of multiple factors and their interactions. The result of single-factor showed that the ZnO NPs were unstable at or near pH[sub.zpc], with high electrolyte concentration; however, the adsorption of natural organic matter (NOM) i.e., humic acid, salicylic acid, and citric acid reverses the surface charge and enhanced NP stability. The Fourier transform infrared (FT-IR) analysis confirms the organic capping ligands on the NP surface. Moreover, the matrix result of analysis of variance (ANOVA) showed that electrolyte concentration and type, and NOM concentration were the most significant factors (p < 0.001) in promoting and influencing aggregation, while the interaction between the factors was also found insignificant. In addition, the result of aggregation kinetics and environmental water samples indicated that the mobility of ENPs may vary substantially in an environment with complex and heterogeneous matrices. This study may contribute to better understanding and prediction of the sedimentation behavior and fate of ZnO NPs in aqueous environments, to facilitate their sustainable use in products and process. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w10050660 |