A metacommunity ecological approach to understanding the community organization of fish in artificial ponds of the Mamoré River floodplain in the Amazonian lowlands of Bolivia

The origin and maintenance of biodiversity and the influence of human activities on biodiversity are issues of central interest to scientists as well as policymakers. We conceptualized the integration of metacommunity paradigms across space and time to better understand the community organization of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental biology of fishes 2018-09, Vol.101 (9), p.1329-1341
Hauptverfasser: Yunoki, Takayuki, Torres, Luis V., Cholima, Reinaldo B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origin and maintenance of biodiversity and the influence of human activities on biodiversity are issues of central interest to scientists as well as policymakers. We conceptualized the integration of metacommunity paradigms across space and time to better understand the community organization of fish under the hydrological control mechanisms of large river floodplains. In our analysis of variation partitioning and functional ecology, patchy dynamics and mass effects represent special cases of species-sorting paradigms generated by neutral processes in certain species, and the relative roles of neutral processes and local adaptations may increase along with the spatio-temporal extent. The effect of flood event timing, floodplain elevation and vegetation cover on species abundance determined the distribution of seasonal patchy heterogeneous habitats. Spatio-temporal structures were observed among patches of the same habitat types across years but within habitat patches in the same year. The convergence of life history traits and respiratory modes of species associated with different habitat types was not significant, and traits could present overall seasonality within patches and segregation among patches of the same habitat types across years. Furthermore, the similarity of these traits was explained by phylogenetic relationships. At the spatio-temporal scale of the present study, the origin of lineage-specific allometric effects in fish, the origin of habitat specialization and their consequences for metacommunity dynamics were not clear. These results are most likely related to species-sorting processes, in which the species adapted to a specific type of habitat ex situ subsequently colonized an area after it was altered via human activities.
ISSN:0378-1909
1573-5133
DOI:10.1007/s10641-018-0780-9