Characterization of Mg-based bimetal treatment of insensitive munition 2,4-dinitroanisole
The manufacturing of insensitive munition 2,4-dinitroanisole (DNAN) generates waste streams that require treatment. DNAN has been treated previously with zero-valent iron (ZVI) and Fe-based bimetals. Use of Mg-based bimetals offers certain advantages including potential higher reactivity and relativ...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2018-08, Vol.25 (24), p.24403-24416 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The manufacturing of insensitive munition 2,4-dinitroanisole (DNAN) generates waste streams that require treatment. DNAN has been treated previously with zero-valent iron (ZVI) and Fe-based bimetals. Use of Mg-based bimetals offers certain advantages including potential higher reactivity and relative insensitivity to pH conditions. This work reports preliminary findings of DNAN degradation by three Mg-based bimetals: Mg/Cu, Mg/Ni, and Mg/Zn. Treatment of DNAN by all three bimetals is highly effective in aqueous solutions (> 89% removal) and wastewater (> 91% removal) in comparison with treatment solely with zero-valent magnesium (ZVMg; 35% removal). Investigation of reaction byproducts supports a partial degradation pathway involving reduction of the ortho or para nitro to amino group, leading to 2-amino-4-nitroanisole (2-ANAN) and 4-amino-2-nitroanisole (4-ANAN). Further reduction of the second nitro group leads to 2,4-diaminoanisole (DAAN). These byproducts are detected in small quantities in the aqueous phase. Carbon mass balance analysis suggests near-complete closure (91%) with 12.4 and 78.4% of the total organic carbon (TOC) distributed in the aqueous and mineral bimetal phases, respectively. Post-treatment surface mineral phase analysis indicates Mg(OH)
2
as the main oxidized species; oxide formation does not appear to impair treatment. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-018-2493-1 |