Improvement of solar-cycle prediction: Plateau of solar axial dipole moment

Aims. We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods. We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2017-11, Vol.607, p.L2
Hauptverfasser: Iijima, H., Hotta, H., Imada, S., Kusano, K., Shiota, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims. We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods. We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results. We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60–80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions. The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/201731813