On the First Eigenvalue of the Degenerate p-Laplace Operator in Non-convex Domains
In this paper we obtain lower estimates of the first non-trivial eigenvalues of the degenerate p -Laplace operator, p > 2 , in a large class of non-convex domains. This study is based on applications of the geometric theory of composition operators on Sobolev spaces that permits us to estimate co...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2018, Vol.90 (4), p.1-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we obtain lower estimates of the first non-trivial eigenvalues of the degenerate
p
-Laplace operator,
p
>
2
, in a large class of non-convex domains. This study is based on applications of the geometric theory of composition operators on Sobolev spaces that permits us to estimate constants of the Poincaré–Sobolev inequalities. On this base we obtain lower estimates of the first non-trivial eigenvalues for Ahlfors-type domains (i.e. quasidiscs). This class of domains includes some snowflake-type domains with fractal boundaries. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-018-2469-z |