On the First Eigenvalue of the Degenerate p-Laplace Operator in Non-convex Domains

In this paper we obtain lower estimates of the first non-trivial eigenvalues of the degenerate p -Laplace operator, p > 2 , in a large class of non-convex domains. This study is based on applications of the geometric theory of composition operators on Sobolev spaces that permits us to estimate co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2018, Vol.90 (4), p.1-21
Hauptverfasser: Gol’dshtein, V., Pchelintsev, V., Ukhlov, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we obtain lower estimates of the first non-trivial eigenvalues of the degenerate p -Laplace operator, p > 2 , in a large class of non-convex domains. This study is based on applications of the geometric theory of composition operators on Sobolev spaces that permits us to estimate constants of the Poincaré–Sobolev inequalities. On this base we obtain lower estimates of the first non-trivial eigenvalues for Ahlfors-type domains (i.e. quasidiscs). This class of domains includes some snowflake-type domains with fractal boundaries.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-018-2469-z