Combined semi-analytical and numerical vibro-acoustic design approach for anisotropic fibre-reinforced composite structures

In many applications, lightweight structures need to combine outstanding component properties and low weight. Here, fibre-reinforced polymers offer particular advantages, as their material-inherent anisotropic material damping behaviour facilitates the design of lightweight structures with both low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2017-09, Vol.404, p.1-14
Hauptverfasser: Dannemann, Martin, Täger, Olaf, Modler, Niels
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many applications, lightweight structures need to combine outstanding component properties and low weight. Here, fibre-reinforced polymers offer particular advantages, as their material-inherent anisotropic material damping behaviour facilitates the design of lightweight structures with both low sound radiation levels and low mass. At the same time, composite structures often have to fulfil a high level of stiffness and strength. These manifold requirements result in a complex design process with optimisation scenarios often involving contrary objectives in terms of weight, stiffness and sound radiation. Those objectives are in turn accompanied by many different design variables. The aim of the work presented in this paper was therefore to develop a material-specific design strategy for scenarios of this type. The authors developed semi-analytical models for the calculation of structural dynamics and sound radiation in composite structures before combining them with optimisation algorithms in order to perform effective sensitivity analyses. Parametric studies were used to define material-specific input parameters for physical characteristics, which in turn provided a basis for the detailed numerical simulation of the vibro-acoustic behaviour of complex geometries. This paper uses a trough-shaped structure as an application-oriented example of the optimisation of vibro-acoustic behaviour with the aid of the numerical model developed by the authors.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2017.05.027