ON RELATION OF TWO PROCESSES WITH INDEPENDENT INCREMENTS APPLIED IN QUEUEING SYSTEMS

In the paper, by using two processes [[xi].sub.t] and [eta](t), t [greater than or equal to] 0 with independent increments, one of which is without negative overshoots and the second one is homogeneous in time, we study a homogeneous Markov process [[xi].sub.t], t [greater than or equal to] 0, and w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TWMS journal of applied and engineering mathematics 2017-06, Vol.7 (1), p.51
Hauptverfasser: Aliyev, T.M, Aliyev, N.A, Mamedov, V.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper, by using two processes [[xi].sub.t] and [eta](t), t [greater than or equal to] 0 with independent increments, one of which is without negative overshoots and the second one is homogeneous in time, we study a homogeneous Markov process [[xi].sub.t], t [greater than or equal to] 0, and we find the Laplace transform of the generating function of transitional probabilities of the process [[xi].sub.t], t [greater than or equal to] 0. Keywords: Process with independent increments, lattice distribution, Poison process. AMS Subject Classification: 60A10, 60J25
ISSN:2146-1147
2146-1147