Nowhere‐zero 3‐flow and Z3‐connectedness in graphs with four edge‐disjoint spanning trees

Given a zero‐sum function β:V(G)→Z3 with ∑v∈V(G)β(v)=0, an orientation D of G with dD+(v)−dD−(v)=β(v) in Z3 for every vertex v∈V(G) is called a β‐orientation. A graph G is Z3‐connected if G admits a β‐orientation for every zero‐sum function β. Jaeger et al. conjectured that every 5‐edge‐connected gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2018-08, Vol.88 (4), p.577-591
Hauptverfasser: Han, Miaomiao, Lai, Hong‐Jian, Li, Jiaao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a zero‐sum function β:V(G)→Z3 with ∑v∈V(G)β(v)=0, an orientation D of G with dD+(v)−dD−(v)=β(v) in Z3 for every vertex v∈V(G) is called a β‐orientation. A graph G is Z3‐connected if G admits a β‐orientation for every zero‐sum function β. Jaeger et al. conjectured that every 5‐edge‐connected graph is Z3‐connected. A graph is ⟨Z3⟩‐extendable at vertex v if any preorientation at v can be extended to a β‐orientation of G for any zero‐sum function β. We observe that if every 5‐edge‐connected essentially 6‐edge‐connected graph is ⟨Z3⟩‐extendable at any degree five vertex, then the above‐mentioned conjecture by Jaeger et al. holds as well. Furthermore, applying the partial flow extension method of Thomassen and of Lovász et al., we prove that every graph with at least four edge‐disjoint spanning trees is Z3‐connected. Consequently, every 5‐edge‐connected essentially 23‐edge‐connected graph is ⟨Z3⟩‐extendable at any degree five vertex.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22231