Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries

High-capacity Si-embedded anodes and Li-rich cathodes are considered key compartments for post lithium-ion batteries with high energy densities. However, the significant volume changes of Si and the irreversible phase transformation of Li-rich cathodes prevent their practical application. Here we re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2018-01, Vol.11 (6), p.1552-1562
Hauptverfasser: Han, Jung-Gu, Lee, Jae Bin, Cha, Aming, Lee, Tae Kyung, Cho, Woongrae, Chae, Sujong, Kang, Seok Ju, Kwak, Sang Kyu, Cho, Jaephil, Hong, Sung You, Choi, Nam-Soon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-capacity Si-embedded anodes and Li-rich cathodes are considered key compartments for post lithium-ion batteries with high energy densities. However, the significant volume changes of Si and the irreversible phase transformation of Li-rich cathodes prevent their practical application. Here we report lithium fluoromalonato(difluoro)borate (LiFMDFB) as an unusual dual-function additive to resolve these structural instability issues of the electrodes. This molecularly engineered borate additive protects the Li-rich cathode by generating a stable cathode electrolyte interphase (CEI) while simultaneously tuning the fluoroethylene carbonate (FEC)-oriented solid electrolyte interphase (SEI) on the Si–graphite composite (SGC) anode. The complementary electrolyte design utilizing both LiFMDFB and FEC exhibited an improved capacity retention of 85%, a high Coulombic efficiency of ∼99.5%, and an excellent energy density of ∼400 W h kg −1 in Li-rich/SGC full cells at a practical mass loading after 100 cycles. This dual-function additive approach offers a way to develop electrolyte additives to build a more favorable SEI for high-capacity electrodes.
ISSN:1754-5692
1754-5706
DOI:10.1039/C8EE00372F