Prescribed Gauss curvature problem on singular surfaces
We study the existence of at least one conformal metric of prescribed Gaussian curvature on a closed surface Σ admitting conical singularities of orders α i ’s at points p i ’s. In particular, we are concerned with the case where the prescribed Gaussian curvature is sign-changing. Such a geometrical...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2018-08, Vol.57 (4), p.1-36, Article 99 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the existence of at least one conformal metric of prescribed Gaussian curvature on a closed surface
Σ
admitting conical singularities of orders
α
i
’s at points
p
i
’s. In particular, we are concerned with the case where the prescribed Gaussian curvature is sign-changing. Such a geometrical problem reduces to solving a singular Liouville equation. By employing a min–max scheme jointly with a finite dimensional reduction method, we deduce new perturbative results providing existence when the quantity
χ
(
Σ
)
+
∑
i
α
i
approaches a positive even integer, where
χ
(
Σ
)
is the Euler characteristic of the surface
Σ
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-018-1373-3 |