Prescribed Gauss curvature problem on singular surfaces

We study the existence of at least one conformal metric of prescribed Gaussian curvature on a closed surface Σ admitting conical singularities of orders α i ’s at points p i ’s. In particular, we are concerned with the case where the prescribed Gaussian curvature is sign-changing. Such a geometrical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2018-08, Vol.57 (4), p.1-36, Article 99
Hauptverfasser: D’Aprile, Teresa, De Marchis, Francesca, Ianni, Isabella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the existence of at least one conformal metric of prescribed Gaussian curvature on a closed surface Σ admitting conical singularities of orders α i ’s at points p i ’s. In particular, we are concerned with the case where the prescribed Gaussian curvature is sign-changing. Such a geometrical problem reduces to solving a singular Liouville equation. By employing a min–max scheme jointly with a finite dimensional reduction method, we deduce new perturbative results providing existence when the quantity χ ( Σ ) + ∑ i α i approaches a positive even integer, where χ ( Σ ) is the Euler characteristic of the surface Σ .
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-018-1373-3