Carbon Nanotube–Graphitic Carbon Nitride Hybrid Films for Flavoenzyme‐Catalyzed Photoelectrochemical Cells

In green plants, solar‐powered electrons are transferred through sophistically arranged photosystems and are subsequently channelled into the Calvin cycle to generate chemical energy. Inspired by the natural photosynthetic scheme, a photoelectrochemical cell (PEC) is constructed configured with prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-06, Vol.28 (24), p.n/a
Hauptverfasser: Son, Eun Jin, Lee, Sahng Ha, Kuk, Su Keun, Pesic, Milja, Choi, Da Som, Ko, Jong Wan, Kim, Kayoung, Hollmann, Frank, Park, Chan Beum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In green plants, solar‐powered electrons are transferred through sophistically arranged photosystems and are subsequently channelled into the Calvin cycle to generate chemical energy. Inspired by the natural photosynthetic scheme, a photoelectrochemical cell (PEC) is constructed configured with protonated graphitic carbon nitride (p‐g‐C3N4) and carbon nanotube hybrid (CNT/p‐g‐C3N4) film cathode, and FeOOH‐deposited bismuth vanadate (FeOOH/BiVO4) photoanode for the production of industrially useful chiral alkanes using an old yellow enzyme homologue from Thermus scotoductus (TsOYE). In the biocatalytic PEC platform, photoexcited electrons provided by the FeOOH/BiVO4 photoanode are transferred to the robust and self‐standing CNT/p‐g‐C3N4 hybrid film that electrocatalytically reduces flavin mononucleotide (FMN) mediator. The p‐g‐C3N4 promotes a two‐electron reduction of FMN coupled with an accelerated electron transfer by the conductive CNT network. The reduced FMN subsequently delivers the electrons to TsOYE for the highly enantioselective conversion of ketoisophorone to (R)‐levodione. Under light illumination (>420 nm) and external bias, (R)‐levodione is synthesized with the enantiomeric excess value of above 83%, not influenced by the scale of applied bias, simultaneously exhibiting stable and high current efficiency. The results suggest that the biocatalytic PEC made up of economical materials can selectively synthesize high‐value organic chemicals using water as an electron donor. A bioinspired photoelectrochemical cell (PEC) configured with protonated graphitic carbon nitride (p‐g‐C3N4) and carbon nanotube hybrid (CNT/p‐g‐C3N4) film cathode, and a FeOOH‐deposited bismuth vanadate (FeOOH/BiVO4) photoanode produces alkanes via an old yellow enzyme homologue from Thermus scotoductus. Photoexcited electrons provided by the FeOOH/BiVO4 photoanode are transferred to the robust and self‐standing CNT/p‐g‐C3N4 hybrid film that electrocatalytically reduces a flavin mononucleotide mediator.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201705232