Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions
Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2018-02, Vol.836, Article P1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients – which are steep near interfaces – drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work. Such activity can be modelled with judicious additional terms in the equations of motion for simple or liquid-crystalline binary fluids. Throughout, the emphasis of the article is on presenting the theoretical tools needed to address a wide range of physical phenomena. Examples include the kinetics of fluid–fluid demixing from an initially uniform state; the result of imposing a steady macroscopic shear flow on this demixing process; and the diffusive coarsening, Brownian motion and coalescence of emulsion droplets. We discuss strategies to create long-lived emulsions by adding trapped species, solid particles, or surfactants; to address the latter, we outline the theory of bending energy for interfacial films. In emulsions where one of the components is liquid-crystalline, ‘anchoring’ terms can create preferential orientation tangential or normal to the fluid–fluid interface. These allow droplets of an isotropic fluid in a liquid crystal (or vice versa) to support a variety of topological defects, which we describe, altering their interactions and stability. Addition of active terms to the equations of motion fo |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2017.832 |