Processing of Cavities in SiC Material for Quantum Technologies

Quantum technology is a field of significant interest that will benefit many applications including communications and sensing. SiC is a promising material for quantum applications such as quantum memories, due to point defects, specifically VSi, in the material, which result in long spin coherence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-06, Vol.924, p.905-908
Hauptverfasser: Gaskill, D. Kurt, Feygelson, Boris N., Banks, Hunter B., Tadjer, Marko J., Kub, Francis J., Klein, Paul B., Hobart, Karl D., Pavunny, Shojan P., Myers-Ward, Rachael L., Giles, Alex J., Luna, Lunet E., Carter, Sam G., Daniels, Kevin M., Glaser, Evan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 908
container_issue
container_start_page 905
container_title Materials science forum
container_volume 924
creator Gaskill, D. Kurt
Feygelson, Boris N.
Banks, Hunter B.
Tadjer, Marko J.
Kub, Francis J.
Klein, Paul B.
Hobart, Karl D.
Pavunny, Shojan P.
Myers-Ward, Rachael L.
Giles, Alex J.
Luna, Lunet E.
Carter, Sam G.
Daniels, Kevin M.
Glaser, Evan R.
description Quantum technology is a field of significant interest that will benefit many applications including communications and sensing. SiC is a promising material for quantum applications such as quantum memories, due to point defects, specifically VSi, in the material, which result in long spin coherence times. We have found that no VSi are present in our epitaxially grown unintentionally and nitrogen-doped 4H-SiC with electron concentrations ranging from 1014 to 1018 cm-3. We create these vacancies using electron irradiation, in concentrations from single defects to ensembles. To utilize the defect luminescence for realistic applications, we have fabricated the SiC into photonic crystal arrays. We present the processing steps required to create photonic crystal cavities in SiC and subsequent challenges.
doi_str_mv 10.4028/www.scientific.net/MSF.924.905
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2052524269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052524269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2715-d92b46333e59876ef9b155d7ff911d7e2cfd985b2773f123b4e088825306c02e3</originalsourceid><addsrcrecordid>eNqNkF9LwzAUR4MoOKffoSD41i65aZLmxT8Up8KGyuZzaNNkZmytJq3Db29kwl59ui-H8-MehK4IznIMxWS322VBO9P2zjqdtaafzBfTTEKeScyO0IhwDqkUDI7RCANjKcsFP0VnIawxpqQgfIRuXnynTQiuXSWdTcrqy_XOhMS1ycKVybzqjXfVJrGdT16Hqu2HbbI0-r3tNt0qgufoxFabYC7-7hi9Te-X5WM6e354Ku9mqQZBWNpIqHNOKTVMFoIbK2vCWCOslYQ0woC2jSxYDUJQS4DWucFFUQCjmGsMho7R5d774bvPwYRerbvBt3FSAWbAIAcuI3W9p7TvQvDGqg_vtpX_VgSr32gqRlOHaCpGUzGaitFUjBYFt3tB76s29PHRw84_FT_g3nzH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052524269</pqid></control><display><type>article</type><title>Processing of Cavities in SiC Material for Quantum Technologies</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Scientific.net Journals</source><creator>Gaskill, D. Kurt ; Feygelson, Boris N. ; Banks, Hunter B. ; Tadjer, Marko J. ; Kub, Francis J. ; Klein, Paul B. ; Hobart, Karl D. ; Pavunny, Shojan P. ; Myers-Ward, Rachael L. ; Giles, Alex J. ; Luna, Lunet E. ; Carter, Sam G. ; Daniels, Kevin M. ; Glaser, Evan R.</creator><creatorcontrib>Gaskill, D. Kurt ; Feygelson, Boris N. ; Banks, Hunter B. ; Tadjer, Marko J. ; Kub, Francis J. ; Klein, Paul B. ; Hobart, Karl D. ; Pavunny, Shojan P. ; Myers-Ward, Rachael L. ; Giles, Alex J. ; Luna, Lunet E. ; Carter, Sam G. ; Daniels, Kevin M. ; Glaser, Evan R.</creatorcontrib><description>Quantum technology is a field of significant interest that will benefit many applications including communications and sensing. SiC is a promising material for quantum applications such as quantum memories, due to point defects, specifically VSi, in the material, which result in long spin coherence times. We have found that no VSi are present in our epitaxially grown unintentionally and nitrogen-doped 4H-SiC with electron concentrations ranging from 1014 to 1018 cm-3. We create these vacancies using electron irradiation, in concentrations from single defects to ensembles. To utilize the defect luminescence for realistic applications, we have fabricated the SiC into photonic crystal arrays. We present the processing steps required to create photonic crystal cavities in SiC and subsequent challenges.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.924.905</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Crystal defects ; Electron irradiation ; Epitaxial growth ; Holes ; Photonic crystals ; Point defects</subject><ispartof>Materials science forum, 2018-06, Vol.924, p.905-908</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2715-d92b46333e59876ef9b155d7ff911d7e2cfd985b2773f123b4e088825306c02e3</citedby><cites>FETCH-LOGICAL-c2715-d92b46333e59876ef9b155d7ff911d7e2cfd985b2773f123b4e088825306c02e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4496?width=600</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2052524269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,23255,27923,27924,33529,33702,34313,43658,43786,44066</link.rule.ids></links><search><creatorcontrib>Gaskill, D. Kurt</creatorcontrib><creatorcontrib>Feygelson, Boris N.</creatorcontrib><creatorcontrib>Banks, Hunter B.</creatorcontrib><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Kub, Francis J.</creatorcontrib><creatorcontrib>Klein, Paul B.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Pavunny, Shojan P.</creatorcontrib><creatorcontrib>Myers-Ward, Rachael L.</creatorcontrib><creatorcontrib>Giles, Alex J.</creatorcontrib><creatorcontrib>Luna, Lunet E.</creatorcontrib><creatorcontrib>Carter, Sam G.</creatorcontrib><creatorcontrib>Daniels, Kevin M.</creatorcontrib><creatorcontrib>Glaser, Evan R.</creatorcontrib><title>Processing of Cavities in SiC Material for Quantum Technologies</title><title>Materials science forum</title><description>Quantum technology is a field of significant interest that will benefit many applications including communications and sensing. SiC is a promising material for quantum applications such as quantum memories, due to point defects, specifically VSi, in the material, which result in long spin coherence times. We have found that no VSi are present in our epitaxially grown unintentionally and nitrogen-doped 4H-SiC with electron concentrations ranging from 1014 to 1018 cm-3. We create these vacancies using electron irradiation, in concentrations from single defects to ensembles. To utilize the defect luminescence for realistic applications, we have fabricated the SiC into photonic crystal arrays. We present the processing steps required to create photonic crystal cavities in SiC and subsequent challenges.</description><subject>Crystal defects</subject><subject>Electron irradiation</subject><subject>Epitaxial growth</subject><subject>Holes</subject><subject>Photonic crystals</subject><subject>Point defects</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkF9LwzAUR4MoOKffoSD41i65aZLmxT8Up8KGyuZzaNNkZmytJq3Db29kwl59ui-H8-MehK4IznIMxWS322VBO9P2zjqdtaafzBfTTEKeScyO0IhwDqkUDI7RCANjKcsFP0VnIawxpqQgfIRuXnynTQiuXSWdTcrqy_XOhMS1ycKVybzqjXfVJrGdT16Hqu2HbbI0-r3tNt0qgufoxFabYC7-7hi9Te-X5WM6e354Ku9mqQZBWNpIqHNOKTVMFoIbK2vCWCOslYQ0woC2jSxYDUJQS4DWucFFUQCjmGsMho7R5d774bvPwYRerbvBt3FSAWbAIAcuI3W9p7TvQvDGqg_vtpX_VgSr32gqRlOHaCpGUzGaitFUjBYFt3tB76s29PHRw84_FT_g3nzH</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Gaskill, D. Kurt</creator><creator>Feygelson, Boris N.</creator><creator>Banks, Hunter B.</creator><creator>Tadjer, Marko J.</creator><creator>Kub, Francis J.</creator><creator>Klein, Paul B.</creator><creator>Hobart, Karl D.</creator><creator>Pavunny, Shojan P.</creator><creator>Myers-Ward, Rachael L.</creator><creator>Giles, Alex J.</creator><creator>Luna, Lunet E.</creator><creator>Carter, Sam G.</creator><creator>Daniels, Kevin M.</creator><creator>Glaser, Evan R.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20180605</creationdate><title>Processing of Cavities in SiC Material for Quantum Technologies</title><author>Gaskill, D. Kurt ; Feygelson, Boris N. ; Banks, Hunter B. ; Tadjer, Marko J. ; Kub, Francis J. ; Klein, Paul B. ; Hobart, Karl D. ; Pavunny, Shojan P. ; Myers-Ward, Rachael L. ; Giles, Alex J. ; Luna, Lunet E. ; Carter, Sam G. ; Daniels, Kevin M. ; Glaser, Evan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2715-d92b46333e59876ef9b155d7ff911d7e2cfd985b2773f123b4e088825306c02e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crystal defects</topic><topic>Electron irradiation</topic><topic>Epitaxial growth</topic><topic>Holes</topic><topic>Photonic crystals</topic><topic>Point defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaskill, D. Kurt</creatorcontrib><creatorcontrib>Feygelson, Boris N.</creatorcontrib><creatorcontrib>Banks, Hunter B.</creatorcontrib><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Kub, Francis J.</creatorcontrib><creatorcontrib>Klein, Paul B.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Pavunny, Shojan P.</creatorcontrib><creatorcontrib>Myers-Ward, Rachael L.</creatorcontrib><creatorcontrib>Giles, Alex J.</creatorcontrib><creatorcontrib>Luna, Lunet E.</creatorcontrib><creatorcontrib>Carter, Sam G.</creatorcontrib><creatorcontrib>Daniels, Kevin M.</creatorcontrib><creatorcontrib>Glaser, Evan R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaskill, D. Kurt</au><au>Feygelson, Boris N.</au><au>Banks, Hunter B.</au><au>Tadjer, Marko J.</au><au>Kub, Francis J.</au><au>Klein, Paul B.</au><au>Hobart, Karl D.</au><au>Pavunny, Shojan P.</au><au>Myers-Ward, Rachael L.</au><au>Giles, Alex J.</au><au>Luna, Lunet E.</au><au>Carter, Sam G.</au><au>Daniels, Kevin M.</au><au>Glaser, Evan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Processing of Cavities in SiC Material for Quantum Technologies</atitle><jtitle>Materials science forum</jtitle><date>2018-06-05</date><risdate>2018</risdate><volume>924</volume><spage>905</spage><epage>908</epage><pages>905-908</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>Quantum technology is a field of significant interest that will benefit many applications including communications and sensing. SiC is a promising material for quantum applications such as quantum memories, due to point defects, specifically VSi, in the material, which result in long spin coherence times. We have found that no VSi are present in our epitaxially grown unintentionally and nitrogen-doped 4H-SiC with electron concentrations ranging from 1014 to 1018 cm-3. We create these vacancies using electron irradiation, in concentrations from single defects to ensembles. To utilize the defect luminescence for realistic applications, we have fabricated the SiC into photonic crystal arrays. We present the processing steps required to create photonic crystal cavities in SiC and subsequent challenges.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.924.905</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2018-06, Vol.924, p.905-908
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_journals_2052524269
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Scientific.net Journals
subjects Crystal defects
Electron irradiation
Epitaxial growth
Holes
Photonic crystals
Point defects
title Processing of Cavities in SiC Material for Quantum Technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Processing%20of%20Cavities%20in%20SiC%20Material%20for%20Quantum%20Technologies&rft.jtitle=Materials%20science%20forum&rft.au=Gaskill,%20D.%20Kurt&rft.date=2018-06-05&rft.volume=924&rft.spage=905&rft.epage=908&rft.pages=905-908&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.924.905&rft_dat=%3Cproquest_cross%3E2052524269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2052524269&rft_id=info:pmid/&rfr_iscdi=true